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Abstract

A wide range of potential dialogue applications involve collaborative problem solving between
humans and complex automated reasoning systems, but most existing dialogue system models use
very simple dialogue models not expressive enough to capture such behavior. Existing models can
only be employed for very simple tasks (e.g., making a reservation, querying bus schedules). We
describe a model of dialogue explicitly based on a model of collaborative problem solving that can
support quite complex task-based reasoning. The key contribution is a domain-independent
collaborative problem solving model that allows the user to interact with complex automated
reasoning capabilities, including existing legacy systems, relatively easily. We describe this model
and present a case study of the system running in a complex domain involving building and
evaluating quantitative models of world processes (e.g., agriculture, economics, food security).

1. Introduction

Most current dialogue systems support only simple tasks that can be encoded in a state-based
dialogue model (see, e.g., Williams et al. (2016) and the Dialogue State Tracking Challenge").
Approaches to dialogue modeling based on the information state (Cooper, 1997), such as
TrindiKit (Larsson & Traum, 2000) and its open-source successor trindikit.py (Ljunglof, 2009),
and OpenDial (Lison & Kennington, 2016) still support only very simple task and domain
models. Such models are not expressive enough to support mixed-initiative dialogue systems with
complex back-end reasoning systems.

Early theoretical work of SharedPlans (Grosz & Kraus, 1996; Lochbaum et al., 1990) and
plan-based dialogue systems (e.g., Allen & Perrault, 1980; Litman & Allen, 1987) laid good
foundations for more general systems. These systems focused on defining the various
communication acts that can be performed in terms of their effects on the dialogue participants
beliefs and goals. Perhaps the best developed formalism is described by Cohen and Levesque
(1990). Gabaldon et al. (2014) present an elaboration of such models within the ICARUS
cognitive architecture. The concept of interpreting dialogue within an explicit model of
collaborative problem solving (CPS) model was developed in (Allen et al., 2002). And while this
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has been the inspiration for a number of subsequent dialogue systems, the CPS model has never
been implemented in a direct way.

RavenClaw (Bohus & Rudnicky, 2009) supports a plan-based dialogue management
framework that has been used to develop a number of dialogue systems. While its dialogue
engine is task-independent and includes a number of generic conversational skills, its behavior,
from language interpretation to response generation, is driven by task-specific dialogue trees (the
plans), which can only describe simple tasks and have to be implemented anew for every
application. The Disco system (Rich & Sidner, 2012) provides a more general framework tied to
a plan-based representation of the task. It requires specifying the domain plans as hierarchical
task networks that are developed for the particular application. While these plan-based
approaches allow more complexity in the dialogues, they do not support dialogue that involves
collaborative interaction with complex back-end reasoners, such as different planning and
simulation engines, or complex systems for data analysis.

The key contribution of our approach is that it uses a domain-independent model of collabo-
rative problem solving and language understanding to support interaction, allowing independently
developed complex reasoning components to implement the task. The first steps towards this are
described in Galescu et al. (2018), in which we introduced a domain-independent model of
collaborative problem solving acts and a framework for deriving such acts based on both domain-
independent language understanding and intention recognition coupled with interaction with a
domain-specific behavioral agent, which manages the back-end reasoning capabilities and is built
from scratch for each application. We produced a generic dialogue shell that can be used to
produce a complete dialogue system with this framework (see Galescu et al., 2018).

This paper describes a further elaboration of this model in which the behavioral agent itself is
also domain-independent and captures an abstract model of collaborative problem solving that is
then easily instantiated with domain-specific reasoning components that can perform tasks such
as planning, simulation, causal analysis, and so on. While this behavioral agent is domain-
independent, it is still task-dependent. In other words, it is general across applications where the
dialogue involves problem solving. We demonstrate this model in a complex domain, namely
collaborative building, running and evaluating models of world processes for purposes of
predictions and planning interventions (which we call world modeling).

1.1 Collaborative Problem Solving

When agents are engaged in solving problems together, they need to communicate to agree on
what goals to pursue, what steps to take to achieve those goals, negotiate roles, resources, and
more. To underscore its collaborative aspect, this type of joint activity has been called
Collaborative Problem Solving (CPS). Modeling the type of dialogues agents are engaged in
during CPS must, therefore, take into account the nature of the joint activity itself. In the early
2000s, Allen and colleagues described a preliminary plan-based CPS model of dialogue based on
an analysis of an agent’s collaborative behavior at various levels:

e An individual problem-solving level, where each agent manages its own problem-solving
state, and plans and executes individual actions;

e A collaborative problem-solving level, which models and manages the joint or collaborative
problem-solving state (shared goals, resources, situations);

e An interaction level, where individual agents negotiate changes in the joint problem-solving
state;
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e A communication level, where speech acts realize the interaction level acts.

This model was refined in a series of publications, and several prototype systems, starting from
the TRIPS system (Allen et al., 2000), have been developed within this framework (Allen et al.,
2002; Blaylock & Allen, 2005; Allen et al., 2007; Ferguson & Allen, 2007). While the CPS
model provided the theoretical foundations, in practice, each of these systems involved the use of
a domain-specific CPS model built specifically for each application, and encoding domain-
specific heuristics in order to support intention recognition.

One of the main goals of our current work has been to enable linguistic interpretation and
high-level intention recognition to be performed independently of the domain-specific problem-
solving mechanisms. The domain specific CPS would then specialize the higher-level intentions
into concrete problem-solving actions and verify that such actions make sense in the domain
context. As a consequence, in this model the back-end problem solvers would be relatively
insulated from the need to worry about linguistic issues of sentence understanding, discourse and
dialogue management.

In Galescu et al. (2018), we describe a generic dialogue shell based on the CPS model that
provides general language understanding and dialogue management capabilities. This dialogue
shell has been used in a range of other systems, including a mixed-initiative system for planning
and execution in a blocks world (Perera et al., 2017), learning about structures in blocks world
(Perera et al., 2018), an assistant to a biologist for building, visualizing, running and modifying
complex biological causal models (Gyori et al., 2017), helping a human composer create and edit
music scores (Quick & Morrison, 2017), and playing cooperative games (Kim et al., 2018). Each
one of these systems uses very different forms of domain-specific reasoning, but all use the same
interface to the generic dialogue shell. In this paper we focus on pushing this model one step
further by providing a generic behavioral agent performing the collaborative problem solving that
could be used in different domains. This model is intended to support any application that that
involves interpreting and analyzing situations, predicting outcomes and planning possible
interventions. We illustrate this model by showing its use in one very general domain, namely
world modeling, where the system collaborates with the user to model various world processes, as
described in the next section.

1.2 Case Study Domain: World Modeling

The state of the art in world modeling involves an extremely labor-intensive process, requiring
person-years of effort by highly trained modelers in order to construct models and run
experiments to provide analysis of complex problems such as food security, migration and land
use. The bulk of this effort does not actually involve constructing new quantitative models; rather,
it is focused on determining how a scenario corresponds to a configuration of quantitative
modeling engines, identifying or approximating the required data and parameter values needed,
and then on the mechanics of running models over a set of scenario variations. For example, in
building the Australian National Outlook (Hattfield-Dodds et al., 2015), over 50% of the effort
was spent manually running simulations over multiple scenarios (e.g., manual linking of models,
adjustment of parameters).

The existing state of the art requires human analysts to do the bulk of the work, identifying
the capabilities of each modeling engine, selecting the relevant ones, researching historical data to
determine possible ranges of values, harmonizing the data for input and connecting the output of
some engines to other engines, possibly via some transformation, and configuring the whole
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Figure 1: The abstract architecture showing domain and task general components (green), domain
general components for problem solving tasks (orange), and domain specific components (pink).

network of modeling engines to perform the desired analyses. Often, solving a problem requires
running a subset of models and caching the results in large datasets that are then accessed by the
next stage of modeling. As a result, it is not feasible to construct such analyses in a timely manner
to support the evaluation of options on ongoing problems critical to global security.

The long term goal of the world modeling project is to develop a dialogue system that can
provide analysts with a rich suite of tools with which they can quickly set up models to answer
new questions, identify the necessary data, make the required assumptions, and then run complex
experiments varying key parameters. This paper uses as the case study the first prototype of this
system, called CWMS (Collaborative World Modeling System, pronounced “kooms”). In
CWMS, the user and the system collaboratively explore different world modeling scenarios. The
two communicate via dialogue in natural language and GUIs (e.g., visualization tools) to
iteratively plan and refine simulation experiments together.

2. Collaborative Problem Solving Based Dialogue Systems

A collaborative conversational agent must understand a user’s utterances, that is, obtain a
representation of the meaning of the utterance, recognize its intention, and then reason with this
intention to decide what to do and/or say next. In addition, the system must convert its own
intentions into language and communicate them to the user.

Figure 1 shows a conceptual diagram of our generic dialogue system. This follows the
common separation of a conversational agent’s functionality into interpretation, behavior and
generation, but where the separation lines are is critical for realizing the idea of isolating domain-
independent from domain-specific processing. From the user's utterance the TRIPS parser (Allen
& Teng, 2017, Allen et al., 2018) constructs a logical form, which is a domain-independent
semantic representation. The logical forms are further processed into surface speech acts,
including social conversational acts, by considering the discourse context and performing
language-based intention recognition. Different surface forms are also normalized (see Section 4
for more details). The CPS manager is responsible for managing the collaborative problem
solving state, i.e., managing the proposals, acceptances and so on required to reach agreement
(mutual goals and beliefs). It converts the basic communicative acts into possible abstract
communicative intentions. These communicative intentions then are further evaluated with
respect to the actual problem-solving state, so they are not fully interpreted until they are accepted
by the behavioral agent. The behavioral agent is responsible for operationalizing the
communicative intentions into actions (which may involve planning, acting on the world,
updating its knowledge of the situation, etc.). An autonomous behavioral agent might be able to
plan and act on its own, but neither the behavioral agent nor the user can unilaterally decide on
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Figure 2: The context for the CWMS behavioral agent showing components that are generic (green),
task specific but domain general (orange), and task and domain specific (pink).

the status of collaborative goals without a commitment from the other party. The two-way
negotiation between the CPS manager and the behavioral agent includes communicating the
behavioral agent's attitude towards shared goals, which the CPS manager will use to generate
communicative acts for NL generation (such as accepting or rejecting a goal, or proposing a new
one) and update the collaborative state.

3. An Overview of the CWMS System

A more detailed view of the behavioral agent and back-end reasoners in the CWMS system is
shown in Figure 2. As discussed above, the parsing, discourse interpretation and collaborative
problem solving manager are mostly domain- and task-independent, but may use some domain-
specific knowledge sources. The behavioral agent is task specific (i.e., analyzing situations and
evaluating courses of action), though domain independent. In other words, the behavioral agent
encodes general problem solving behaviors such as planning, evaluating hypotheses, and
acquiring and displaying information. It is designed to be able to work with any combination of
domain-specific simulation and reasoning engines, shown in pink. Each simulation/reasoning
module, as it comes online, sends a message registering its requirements (input) and capabilities
(output). From these specifications, the planner will develop one or more viable plans linking the
different modules to reach the desired simulation goal, by feeding the outputs of particular
modules (possibly with data transformations) as inputs to other modules.
We incorporated the following domain specific simulation modules into our initial system:

1. DSSAT (Decision Support System for Agrotechnology Transfer; Hoogenboom et al., 2015):
A point-based crop modelling system with detailed crop models for over 40 crops.
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2. pSIMS (parallel System for integrating Impact Models and Sectors; Elliott et al., 2014): A
framework for massively parallel climate impact simulations and global grid-based crop
modelling, using as the underlying crop modelling engine DSSAT (and others).

3. ABN (Agent Based Network; Marchand et al., 2016): An agent-based out-of-equilibrium
food shock model that computes changes in import, export, consumption and reserves due to
an injected shock to a country's crop production.

4. TWIST (Schewe et al., 2017): A short term equilibrium model for computing market prices
based on producer-side and consumer-side reserves, supply, demand, production and
consumption.

5. IMPACT (International Model for Policy Analysis of Agricultural Commodities and Trade;
Robinson et al., 2015): A partial equilibrium multi-market economic model for analyzing
long term scenarios (30 years) involving agriculture, trade and food security.

Figure 3 shows an actual dialogue with the current system, which we will use to explore the
system operation in the rest of the paper. As one can see, it starts with the user suggesting a goal
(1), which is accepted and then the goal is refined by the system (2) and an initial course of action
suggested (4). To support this interaction, the system reasoned that malnourishment is both an
indicator of food insecurity and also that it is a value that can be computed by one of the
reasoning engines. The system then constructs a plan to run a reasoning engine that can compute
expected childhood malnutrition rates, based on baseline information on expected availability of
food, etc. The answer computed is given in (6). The user then expresses a desire to elaborate the
scenario based on predictions that the coming year will be an El Nifio year. The system
recognizes the intention to run a new analysis with the new assumption.

To estimate the amount of change, CWMS has to construct a plan to estimate the change in
crop yields if the coming year is an El Nifio year. A key problem in prediction is that the future
weather and other factors are of course unknown. Thus CWMS constructs a plan to estimate the
effect of an El Nifio year by interpolating results from simulations of 30 past years, weighting
each result based on how much of an El Nifio year it was and how distant the year is. Once the
change in crop yield is computed, this change can then be fed through an economic model to
compute the effect on food availability, and the change in food availability is then fed through a
food security model that can compute malnourishment rates.

The user follows up on the analysis with an open-ended question about what could be done to
mitigate the effect of the El Nifio event. The system does not have a specific answer. It does know
a strategy to help the user explore causal connections, however, and so in response it generates a
causal graph and generates utterance (12). Using this information the user asks about the effect of
changing the planting date. The system knows a problem solving strategy for exploring the
effects of changing variables, and so asks whether it should construct a simulation experiment
that estimates the crop yields for a range of different planting dates.

Once the user concurs, the system builds a plan for the experiment. Basically, it chooses a
range of planting dates one week apart, starting one month before the typical planting date and
running up to one month after. For each of these dates, it estimates the expected yield using the
interpolation function for El Nifio operating over the 30 years of past data. Once completed, it
shows a plot of the results to the user and identifies the best option. While this is as far as we have
space to discuss, the user could easily continue on, for instance asking for elaboration (e.g., OK,
and how would that affect the malnourishment rates?), or exploring other options (e.g., What if
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Can you analyze food insecurity in Sudan next year.

Should we look at child malnourishment rates?

OK.

Should I compute a baseline estimate based on available data?

yes
System identifies a reasoning engine (IMPACT) that can estimate childhood
malnourishment, and uses existing knowledge about Sudan (population, food
availability, etc.) to estimate the number of malnourished children.

6 S: OK. The percentage of malnourished children is about 39%.

7 U: Whatif2019 is an El Nino year?
System builds a plan to estimate the difference in crop yields in Sudan in El Nino years
by interpolating simulation results from 30 years of prior weather data.

8 S: [can estimate the effect with the following plan. Does that look good?

9 U: Yes

10 S: OK. The percentage of malnourished children increases by 5%.

11 U: What can we do to mitigate the increase?
System creates and displays a causal graph based on the knowledge it has acquired from
the declarations of the reasoning engines.

12 S: Hereis what I know about causal influences of malnourishment

13 U: What would happen if we change the planting date?

14 S:  Shall I run simulations varying the planting date?

15 U: Yes
System creates a plan to run a series of simulations that vary the planting date parameter,
again estimating yields for an El Nino year by interpolating over results obtained from
simulations of the past 30 years. The plan then assembles the results and presents to the
user in a chart.

16 S: The best scenario involves planting crops one week earlier than usual.

DA W N =

Figure 3: A dialogue between a user (U) and the CWMS system (S).

we could increase the amount of fertilizer that was available?), or pursuing some new strategy for
dealing with the problem, such as shipping more food aid to the region.

4. System Details

This section discusses some aspects of the system in more detail using the dialogue in Figure 3 as
a running example, and elaborates on the components shown in Figure 2.

4.1 Language and Discourse Processing

While not the focus of this paper, to provide context this section describes briefly the language
and discourse processing performed by the system. The TRIPS parser has an extensive grammar
and an effective 100,000+ word semantic vocabulary defined in terms of a roughly 4000 concept
ontology, described in more detail in Allen et al. (2018) and Allen & Teng (2017). After a first
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pass that performs named entity recognition, using geographical term databases, the parser
produces a representation in a unscoped modal logic (see Allen, 1995; Manshadi et al., 2008). A
fragment of the parse for the first sentence is shown in graphical form in Figure 4.

The logical form is then passed to the interpretation manager, which performs a number of
functions, most notably: (1) utterance segmentation; (2) surface speech act identification; (3) ref-
erence resolution; and (4) ontology mapping. Utterance segmentation handles situations where
the user might perform multiple speech acts in a single utterance, such as an acceptance and an
assertion (e.g., Yes. I'll get the pizza). Segmentation is accomplished by identifying various coor-
dination structures in the logical form produced by the parser. The interpretation manager then
proceeds to process each speech act individually, updating the discourse context after each one.

The second phase is identification of the surface speech act, which encodes the conventional
ways that basic communicative intentions can be realized. The basic speech acts include
assertions (TELL), commands (REQUEST), acknowledgements, acceptance and rejection acts,
proposals, and various forms of questions and answers. It uses patterns based on convention
linguistic forms to identify the range of likely speech acts. For example, the sentence Can you
open the door would be identified most likely to be a REQUEST (to open the door), with a less
likely option that it is a true yes/no question about the ability to open the door. This phase of
processing provides a significant canonicalization of the range of possible ways speech acts can
be realized. For instance, all of the following acts are identified as asking a question about the
time: What is the time? Can you tell me the time? Do you know the time? Tell me the time. [ want
to know the time. For the most part, these are all interpretations that could be derived from first
principles using the plan based model of speech acts (Allen & Perrault, 1980). With our current
approach, however, these so-called indirect forms identified by inference in the plan-based model
are derived directly and with no additional “cognitive effort”, and thus is consistent with what we
know of human processing from psycholinguistic research. The system has slightly less than one
hundred hand-built rules that encode conventional common indirect forms found in conversation.
Note the rules do not identify a single interpretation. Rather, they identify a ranked set of possible
interpretations based on typical usage and the current discourse context. These options are passed
to the next phase which can then use additional context to identify the interpretation that was
actually intended.

Back to our running example, the sentence Can you analyze food insecurity in Sudan next

(SPEECHACT SA_YN-QUESTION)

%NTENT :LEX

(F (-* SCRUTINY ANALYZE)) ANALYZE

:AGENT :NM :FIGURE @ATI‘O\FIGURE :TENSE :MODALITY

(BARE (:* UNSAFE-SCALE INSECURITY)) ~ (FEVENT-TIME-REL)  (F (:* SEQUENCE-VAL-NEXT NEXT)) ~ (F(:*IN-LOCIN))  PRE (:* ABILITY CAN
X ﬁEX xisoc-wm-[ l NR‘OUND ’AUREILEX / xiOUND
U INSECURITY ~ (KIND (:* FOOD FOOD)) (THE TIME-LOC) ~ NEXT (THE (:* GEOGRAPHIC-REGION SUDAN))
ﬁROFORNEXTENT ﬁAME—ON‘EX
(:* YEAR YEAR) SUDAN SUDAN

Figure 4: A fragment of the parse for “Can you analyze food insecurity in Sudan next year”.
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year, while literally a yes-no question about ability, is mapped to a REQUEST act as the first
choice. Namely, it is a request that the system perform an analysis action (ONT::SCRUTINY) of
the food insecurity situation in Sudan.

The next phase in the interpretation manager is reference resolution, where referring
expressions such as anaphora and definite descriptions are connected to previously mentioned
terms in the discourse. As typical with the first utterance in a dialogue, there are no anaphoric
expressions in our example sentence. Note that external name references have already been
handled by the named entity recognition component that was part of preprocessing. Thus,
external names are already tagged with their referential information before parsing.

In many cases, the logical form produced by parsing is transformed into a new representation
based on the domain ontology, using an ontology mapping system. In systems where such
mapping rules are defined, we can automatically compute which TRIPS ontology types
correspond to domain-specific types and prefer these senses.

This process results in the surface speech act that is the starting point in Figure 2.

4.2 Collaborative Problem Solving Management

The output of the discourse interpretation phase is a speech act hypothesis which is the input to
the collaborative problem solving management phase. The CPS manager is designed to interpret
and drive the interactions that embody the collaborative problem solving negotiation between the
user and the system (i.e., the interaction level in the above discussion). It is an evolution of the
Collaborative Problem Solving (CPS) model described in (Allen et al., 2002) with a particular
focus on separating the domain-independent aspects of CPS from the domain-specific reasoning.
It is mainly concerned with interpreting and driving the interaction that establishes and manages
the collaborative problem state, by means of CPS acts such as proposing a goal, accepting or
rejecting a proposal, proposing the refinement of a goal, or a solution to a problem. One might
immediately realize that this cannot be done accurately without reasoning about the domain-
specific intentions as well. For instance, in our running example, the sentence Can you analyze
food insecurity in Sudan next year, which has been mapped to a surface speech act REQUEST, is
deemed likely to be a PROPOSE of a new top level goal (since no goal has been established so
far, this being the first utterance). All this can be done based on the current problem solving
context (i.e., no goal has been agreed to yet) and the form of the surface speech act (i.e., a
REQUEST). But this hypothesis cannot be confirmed without checking that ‘analyzing food
insecurity’ is a reasonable collaborative goal for the user to propose to this system. This check of
course requires domain-specific knowledge and reasoners. Some other REQUEST acts, such as
Can you repeat what you said would not be confirmed as a relevant shared domain goal and thus
would not be interpreted as a PROPOSE of a shared goal. Rather, it would be interpreted using a
model of the communication process and grounding.

In order to make the system as domain-independent as possible, we balance this tension
between the desire for domain-independent processing and the need for domain specific
processing by having the CPS manager behave as a hypothesis generator: It generates hypotheses
about the actual CPS act performed and requests the behavioral agent to evaluate their likelihood
given the current problem solving state. If the behavioral agent deems the hypothesis acceptable,
then the CPS manager commits the act and thus changes the CPS model, thereby identifying what
the system believes was the intended interpretation. If the behavioral agent finds a hypothesis
unacceptable, the CPS manager can then suggest another possible interpretation, and continue to
do so until an acceptable one is found, or all hypothesized interpretations are exhausted. This
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EVALUATE CPSact
CPS ACCEPTABLE CPSact Behavioral
Manager Agent
COMMIT CPSact

Figure 5: The EVALUATE-COMMIT cycle.

evaluate-commit cycle (see Figure 5) is critical for enabling intention recognition that exploits
strong linguistic context (i.e., the exact phrasing of utterances and the discourse context) as well
as the strong context of the collaborative problem solving state, and domain reasoning provided
by different back-end specialized reasoning engines.

Continuing with our running example, the following set of messages would be sent to
establish the joint goal to analyze food insecurity in Sudan, where CI1 is an identifier to the
semantic representation of the action of analyzing food insecurity in Sudan, which is formally
specified in the elided context arguments.

CPS Manager — BA: (EVALUATE :content (ADOPT :id O1 :what C1 :as (GOAL)) :context ...)
BA — CPS Manager: (ACCEPTABLE :content (ADOPT :id O1 :what C1 :as (GOAL)) :context ...)
CPS Manager — BA: (COMMIT :content (ADOPT :id O1 :what C1 :as (GOAL)) :context ...)

In addition, the CPS manager issues a directive to the generation component to produce an
acceptance of the proposal (the OK in utterance 2 in Figure 3). Once the acceptance is generated,
the system believes there is a shared joint goal with the user to analyze the food security situation
in Sudan.

Looking at the formalism in a bit more detail, we see that a CPS act itself consists of two
main parts: an operation and a collaborative problem solving object. The operations model the
interactions that the two agents take to establish joint intentions, including actions such as
ADOPT and ABANDON whereas the CPS objects are goals, constraints, situations, etc. A brief
summary of the key CPS acts is shown in Table 1.

Each of these acts may take a number of arguments that provide further context for the
operation. For instance, the ADOPT act might introduce a top-level goal, or might introduce a
goal that is a subgoal of an existing goal, e.g., a top level goal can be introduced with (ADOPT :id
01 :what C1 :as (GOAL)), whereas a subgoal could be (ADOPT :id 02 :what C2 :as (SUBGOAL :of
01)). More detail on the architecture of our CPS manager can be found in Galescu et al. (2018).

4.3 Defining Domain-Specific Capabilities

Before discussing the behavioral agent, we should address how the domain-independent problem
solving that the behavioral agent implements relates to the domain-specific reasoning and
knowledge capabilities for the application domain. We will refer to these as the domain-specific
reasoning engines (DSREs). At system startup time, each DSRE identifies its capabilities in terms
of its input and output parameters indexed into a common ontology. This information is then used
by the behavioral agent as needed when it needs information that matches one of the output
parameters. Each parameter declaration includes, as appropriate, key information such as the
required units for the values. In addition, each input parameter is declared as being required (i.e.,
the values must be provides) or optional (i.e., generally this means the DSRE has default values if

10



DIALOGUE AS COLLABORATIVE PROBLEM SOLVING

Table 1. Key collaborative problem solving acts.

Topic ACT Gloss Example Sentence
ADOPT Introducing a goal Let’s plan food aid for Sudan.
SELECT Focusing on existing goal Let’s return to the food problem.
DEFER Temporarily putting a goal Let’s work on this later.
Goals aside
ABANDON Abandoning a goal I don’t care about this anymore.
RELEASE Completing a goal We’re done.
ASSERTION Making a claim It's too hot to grow rice.
Knowledge . . .
ASK-IF Asking a yes/no question Is it too hot?
ASK-WH Asking a WH question How cool does it need to be?
ACCEPTABLE Goal is acceptable OK. That’s good.
UNACCEPTABLE Goal is unacceptable That doesn’t make sense.
Reporting REJECTED Goal is refused No. I won’t do that.
Problem . .
Solving Status FAILURE Problem solving failed I can’t do that.
I don’t have enough wheat.
ANSWER Satisfying a question We need cool nights.
EXECUTION-STATUS Reporting on progress in I’'m running the simulation.
problem solving I found all the distribution areas.

a value is not specified). In world modeling, many of the DSRE’s require or produce table-based
data (e.g., the crop yields in different grid locations over ten years). To allow this the
specification language allow declaration of table formatting parameters.

As an example, Figure 6 shows how the DSRE that encapsulates the pSIMS system identifies
its capabilities. pSIMS computes crop production and other values for an area and timeframe and
is described in Elliot et al. (2014). Looking at the declarations, we see this component is defined
in terms of a set of input parameters and output parameters that describe what it can compute. All
parameters are identified by an :ID-CODE and their data format is specified in the :FORMAT
and possibly a :UNIT field if it is a numerical quantity. For instance the INPUT parameter
LOCATION-FILE in Figure 8 has the ID-CODE LOCATION and a FORMAT value of
(RASTER “GTIft” 180 90). Key to enabling the interoperability on different components is the
declaration of parameters in terms of a common ontology. For this initial prototype we hand-built
the ontology drawing from a range of sources, including the ICASA ontology (White et al.,
2013), the DSSAT parameter codes, and a few generic ontology types from the TRIPS ontology
(e.g., LOCATION, TIME). The ID-CODE is drawn from this ontology and allows the system to
link the same parameters between different DSREs. So, from this declaration we know this
parameter identifies a LOCATION, and, furthermore, one that is specified as a gridded
representation of the area of interest, i.e., (RASTER “GTIff” 180 90). The system also knows of
other ways to represent locations, including ISO country codes, which are used by other DSREs.
The planner uses a component called SPACEMAN that can map locations between different
location formats as necessary. SPACEMAN also can map from natural language descriptions
(e.g., country names) to various location formats as well.
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(DEFINE-SERVICE :NAME PSIMS :COMPONENT CROPMODELLER
:INPUT
( (INPUT :NAME LOCATION-FILE :GLOSS "image file of geographic region to simulate"
:ID-CODE LOCATION :FORMAT (RASTER "GTiff" 180 90) :REQUIREMENTS :REQUIRED)
(INPUT :NAME CRID :GLOSS "identifier of crop to simulate"
:ID-CODE CRID :ID-CODE-CONSTRAINT (MAZ PML RIC SGG SBN WHB WHD WHT)
:FORMAT ONT::CODE :REQUIREMENTS :REQUIRED)
(INPUT :NAME PLYR :GLOSS "planting year(s) to simulate"
:ID-CODE YEAR :ID-CODE-CONSTRAINT (RANGE 1980 2010)
:FORMAT (OR ONT::NUMBER ONT::LIST) :REQUIREMENTS :REQUIRED)
(INPUT :NAME FEN_TOT :GLOSS "total nitrogen in applied fertilizer"
:ID-CODE FEN_TOT :ARGUMENTS (:LOCATION-FILE :CRID :PLYR)
:UNIT (RATIO ONT::KG ONT::HECTARE) :FORMAT ONT::FUNCTION :REQUIREMENTS :OPTIONAL)
)
:OUTPUT
( (OUTPUT :NAME PROD :GLOSS "global sum of harvest weight at maturity"
:ID-CODE PROD :UNIT ONT::MEGATONNE :ARGUMENTS (:LOCATION-FILE :CRID :PLYR)
:FORMAT (TABLE :PROD :LOCATION-FILE :CRID :PLYR)

)

Figure 6. Excerpts from a declaration of a domain-specific reasoning engine.

As another example, the FEN_TOT input parameter encodes the amount of fertilizer used
and has an ID-CODE drawn from the ICASA ontology. pSIMS requires the amount to be
specified in kg/hectare. Other modules may require fertilizer amounts to be expressed in other
units; the planner uses a specialized component to convert between different unit types as desired.
Note that FEN-TOT is actually a function dependent on the crop, location and planting year.

The declarations also specify whether the parameter must be specified in order to run the
component (i.e., it is REQUIRED), or is optional. FEN_TOT is optional and, if not specified, will
be instantiated with a default level that the application has based on the location. The CROP-ID,
location and planting year are all required.

Finally, a key part of the parameter declaration is the explicit representation of tabular data.
Often a component will produce a table as its result. For example, the PROD parameter defined in
the output declaration is a table that lists the production for each crop, location and planting time
specified in the inputs. Such tables must be explicitly defined so that the planner can extract in-
formation as necessary to prepare input to another component. For instance, once the production
per crop per location per year is computed, the planner might sum over the location grid elements
to produce a table that represents the total production for the whole area (e.g., South Sudan). In
other cases, the planner might plan a series of calls to a component that iterates over the values in
a table, and then collects all the results and constructs a new table for use as input to another
DSRE. Given that DSREs are systems built by external parties with different uses in mind, the
planner must be flexible enough to accommodate the data idiosyncrasies of each one. The careful
declaration of the input and output parameters provides the information to accomplish this.
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4.4 The Behavioral Agent

We can now describe the CWMS behavioral agent. In our previous applications, the behavioral
agents have always been domain specific and built from the ground up for each domain. In
CWMS, however, we have developed a behavioral agent that captures the generic problem
solving process itself, abstracted away from a specific domain. This distinction is similar to that
found in general purpose planning systems, where the planner itself is domain independent and
the domain specific aspects are found in the definitions of the operators. However, this corre-
spondence only goes so far, as traditional planning is only a small part of overall problem solving
behavior. Other behaviors in CWMS include building causal models of phenomena, planning and
evaluating interventions, and acquiring data from online sources and user interaction. Table 2
summarizes some different problem solving tasks that are present in the world modeling domain.
Note that any one dialogue will involve multiple problem solving behaviors (e.g., to build a
simulation workflow one might first need to build a plausible causal model).

There are two main functions that each collaborative problem solving task must perform:
intention recognition (i.e., given we are engaged in the current PS task, what does the user want
to do now?) and behavior (i.e., once we know the new goal/subgoal in the task, how do we
accomplish it?). The intention recognition function supports the Evaluate/Commit protocol
described above, and the behavioral agent interacts with the CPS manager to arrive at an
interpretation of the latest user move (be it from language or an action in a GUI). The input to the
intention recognition is a plausible CPS act computed by the CPS manager, which is then
evaluated in the context of the current problem solving task. The behavioral agent returns a
response to the CPS manager that accepts, conditionally accepts or rejects the interpretation.
Once an interpretation is agreed upon and committed, the behavioral agent then enters the
behavior phase to perform the appropriate actions leading to a response.

Looking in more detail, each problem solving task is represented as a state transition network,
namely a set of states where transitions between the states are labelled with a CPS act that signals
the transition. Associated with each state is code that implements the system’s “private” problem
solving behavior which ultimately results in an attempt to establish the next shared CPS act that is
captured in one of the outgoing transitions.

In other words, the intention recognition process involves either initiating a new problem
solving task, or identifying the correct transition to take within the existing task. Once the
transition is taken, the behavioral agent then performs the behavior associated with the new state
to further the problem solving interaction. This behavior might involve planning, running
simulations, acquiring data, or other reasoning, and ultimately terminates at the stage where user
agreement would be necessary to continue (i.e., the system needs to initiate the next collaborative
problem solving act). The range of possible CPS acts will be captured by the set of outgoing
transitions from the state. The new CPS act is proposed to the CPS manager, and if it is agreed to
by the user, the transition is taken to the next problem solving state in the task.

Note a key difference between the activity in the CPS manager and the activity of the
behavioral agent: The CPS manager models the individual interactions between the system and
user, while the behavioral agent models the problem solving state in terms of committed (i.e.,
mutually agreed) problem solving actions. In other words, the CPS manager models the dialogue
in terms of proposals, acceptances, rejections, and so on. The behavioral agent, on the other
hand, models the interaction in terms of the mutually agreed problem solving actions (e.g., we are
jointly analyzing food insecurity, we are agreeing to make a certain assumption, we are jointly
building on a simulation model, etc.).
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Table 2: Some of the key collaborative problem solving activities in world modeling.

conditions (using prior knowledge,
knowledge from reading, and user input)

Problem Solving Description Examples of Goal
Task Statements
Collaboratively build a causal model that What are the key
captures key influences on a certain end influences affecting food
1 | Building causal condition, or alternatively, find a model insecurity?
models that explains the relationship between two | How does a drought

affect food availability?

Planning and
2 | running simulation
workflows

Given a causal model, collaboratively plan
a workflow of existing simulation engines
that could quantify the causal model (using
knowledge of available simulation engines,
and user input, especially with respect to
generating approximations)

What are the predictions
for food insecurity in
Sudan next year?

How is migration
affecting population at
risk?

Compare effects of
varying input values
3 | (e.g., intervention
analysis)

Given a causal model and/or a simulation

workflow, collaboratively plan a series of
runs under different conditions in order to
explore how one condition affects another.

How are crops affected if
next year is an El Nino?
What planting date would
maximize the crop yield?

4 | Acquiring and
preparing data sets

Given a set of information needs,
collaboratively acquire or estimate this
information using existing databases,
acquiring data through reading existing
documents, and developing approximations
as necessary with the user.

What are the soil
characteristics in eastern
South Sudan?

How much maize was
produced in each region
of Sudan last year?

5 | Situation analysis

A very general behavior that typically
invokes the other more specific behaviors.
Given a problem statement to understand a
situation, collaborate with user to facilitate
their understanding of the actual conditions
and possible interventions

Let’s analyze food
insecurity in Sudan for
the next two years

To make this clear, consider some of the interactions that occur in the example dialogue of

Figure 3. Specifically, let’s start with the first six interactions repeated here.

(1) U: Can we analyze food insecurity in Sudan next year.
(2) S: Should we look at child malnourishment rates?

(3) U: OK.

(4) S: Should I compute a baseline estimate based on available data?

(5) U: yes.

(6) S: OK. The percentage of malnourished children is about 39%.

Figure 7 shows a path through the situation analysis task that is invoked and executed during
these six utterances. Note this is a single path through the model that captures this one dialogue.
Other dialogues would take other paths in the model that are not shown.

As discussed earlier, statement (1) is transformed into a REQUEST to analyze food
insecurity, which the CPS manager converts to a PROPOSAL of a new goal that the behavioral
agent identifies as initiating the situation analysis task, where the condition of interest is food
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insecurity, the location of interest is Sudan and the time of |
interest is next year, namely 2019. Once the COMMIT

ANALYZE [FOOD_INSECURITY]

message is received by the behavioral agent, the first [SUDAN, 2019]
transition shown in Figure 7 is followed and the behavioral ¢

agent is in state SA-1. The behavior associated with this SA-1

state is to identify how an abstract condition (i.e., food lidentify indicators]
insecurity) might be analyzed in terms of indicators that |

can be measured. Based on knowledge of a component  INDICATOR [CHILD_MAL, FOOD_INSECURITY]
from the IMPACT system, the system knows that the [SUDAN, 2019]
percentage of malnourished children is a possible indicator $

of food insecurity. The behavioral agent sends a proposal SA-2

back to the CPS manager to reach agreement on using [choose estimation
childhood malnutrition as an indicator (utterance 2). Once method]

agreement is reached (utterance 3), the transition from SA- |
COMPUTE-BASELINE [CHILD_MAL]

1 to SA-2 has been satisfied. Note this same model would [SUDAN, 2019]
account for a different dialogue where the user performs v
utterance (2) and the system performs utterance (3). Since SA-3

the transitions are joint actions, it does not matter who [estimate indicator]

actually made this initial proposal. l

State SA-2 involves deciding on a method to estimate
AGREE-ON-VALUE [CHILD_MAL]

the indicator. There are a number of possibilities a full [SUDAN, 2019]
system might consider. For instance, it might check if there I

is existing concrete data regarding the condition at the time SA4

and place (unlikely, as we’re looking at the future), or it [choose next action]
might search the web for documents that offer predictions

and analyses for the condition at the time and place. The Figure 7: A trace through the

current prototype, however, is limited in its ability to search situation analysis problem solving
and retrieve such information from online sources. This is model underlying the dialogue.
an area for future work. A third strategy, which is
implemented, is to see if the system has any reasoning engines that could compute an estimate for
the indicator. In this case, the system does have such a component, namely a part of the IMPACT
system that can compute food insecurity measures. The system proposes to the user that it
compute an estimate based on baseline information (utterance 4). Once this is accepted (in
utterance 5), the transition from SA-2 to SA-3 is made. In SA-3, the system invokes the planner
to estimate the percentage of child malnourishment in Sudan in 2019. In this case, the plan is
trivial, as the IMPACT system contains all the default data needed to compute the estimated
value. Once this plan is executed (i.e., the IMPACT system has been invoked and returns a
result), the behavioral agent then sends the CPS manager a request to INFORM the user of the
result (utterance 6) as a way to establish the transition at the bottom of Figure 7.

The next segment of the dialogue involves more complex behavior:

(7) U: What if 2019 is an EI Nino year?

(8) S: I can estimate the effect with the following plan. Does that look good?
(9) U: Yes.

(10)S: OK. The percentage of malnourished children increases by 5%.

The intention recognition for utterance (7) is performed in the context of the AGREE-ON-
VALUE transition from state SA-3 in Figure 7. The CPS manager is expecting an acceptance or
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pSIMS ABN IMPACT
PROD CONSUM PCT_MALNOUR
“w\cla\giﬁlr'_l 2%2(9,, 4‘ '—» “food production 4‘ '—» “food available AD—> “child malnutrition
2019” 2019” rate, 2019”

Figure 8. A initial causal graph connecting weather to food insecurity.

weather-based
pSIMS interpolation IMPACT

ABN
WEATHER CONSUM PCT_MALNOUR

“weather models AD—> “food production ~D—> “food production AD—> “food available —D—» “child malnutrition
1980-2010” 1980-2010” 2019” 2019” rate, 2019”

Figure 9. Revised plan adding weather estimation to predict future production.

rejection of utterance (6), however utterance (7) appears to be neither. This is commonplace in
human dialogue, in which a proposal can be implicitly accepted if the response can be interpreted
as continuing the current problem solving process. The system does this by attempting intention
recognition on utterance (7) as though utterance (6) had been accepted (assuming the response
was not an explicit rejection!). Utterance (7) is recognized as a proposal to compute an alternative
analysis assuming that 2019 is an El Nifio year, an expected continuation of the problem solving
process. The behavioral agent receives an acceptance of the value for childhood malnutrition
from the CPS manager, which completes the transition to SA-4 at the bottom of Figure 7.

Following this, the CPS manager sends the behavioral agent the (already derived)
interpretation of utterance (7), and the behavioral agent in response initiates a subtask to compute
and compare a set of results with the control parameter being whether 2019 is an El Nifio year or
not. The first step of this new subtask is to initiate a further subtask to identify a causal model that
relates the target condition (i.e., child malnutrition) with the control condition (2019 as El Nifio
year or not). The CWMS system attempts to construct such a model using the knowledge it has of
the domain-specific reasoning engines that are available, as finding a chain through the input and
output parameters of these models would suggest a method for computing the values. An initial
chain linking the two parameters is shown in Figure 8.

While this identifies a possible causal chain through a suite of known reasoning engines,
there are problems that need to be resolved before this would an executable workflow. First of all,
each of the DSREs have other input parameters that are required — some values can be identified
in the immediate context (E.G., LOCATION is Sudan, year is 2019, etc.), others might need to be
retrieved or looked up (e.g., what are the main crops grown in Sudan), and others might need to
have approximations developed in collaboration with the user.

A key area where approximations must be used has to do with weather. The agricultural
models used in pSIMS and DSSAT need detailed day-to-day models of the weather to simulate
the growth of the crops. However, we clearly don’t have such a model of the weather in 2019 as it
hasn’t happened yet! In fact, for pSIMS we only have weather records for the years 1980 to 2010.
To deal with this problem, we developed a weather estimation operator in CWMS that runs
desired configurations on past weather data, and then uses an interpolation function to produce an
approximation of the values for a future date. As a default interpolation, when we have no insight
into the future weather, we use a simple weighted average that gives slightly more relevance to
more recent years. If we know something about the future weather, however, say that it is an El
Nifio year, then we can use an interpolation function over the past years where previous El Nifio
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years are given more weight. Using this capability CWMS revises its plan in Figure 8 to add the
segment approximating yields in 2019, as shown in Figure 9.

Once the system has what it thinks is a valid plan, it then presents it to the user and asks for
comments and/or approval (utterance 9). At this stage the user might suggest modifications and
revisions to the plan, or completely reject or accept it. In our example, the user accepts the plan
(utterance 10) and then the system executes the plan under the two control conditions
(unspecified default weather vs. El Nifio weather).

Plan execution for the most part involves invoking the DSRESs in the appropriate order, after
making necessary data conversions to match the required data formats for each DSRE. Once
CWMS completes the execution, it summarizes the effect of the new assumption in terms of the
change in rate of malnourished children (utterance 10). Note that utterance (11) involves yet
another implicit acceptance of the result. Once this is recognized, the subtask of comparing
effects is completed and the behavioral agent is once again back in state SA-4 and ready to
interpret the user’s new request, which is how to mitigate the effects.

5. Concluding Remarks

We have discussed a dialogue system framework that can manage dialogues for significantly
more complex tasks than possible with previous approaches. Furthermore, the system is general
across domains that can be cast as collaborative problem solving. We have shown how the
dialogue management can be integrated with domain-dependent reasoning engines based solely
on the declaration of their reasoning capabilities in an agent-based framework. The resulting
system can engage in complex collaborative problem solving as required for modeling world
processes. We note that the current system is only a prototype and much work remains to be done
to produce a robust fully functional system that can be used by analysts.

One of the key challenges moving forward is that, unlike the example dialogue we used
above that was language dominant, complex world modeling will often require significant use of
GUIs for communication. The system needs to be able to present information and summarize
results using maps, charts and other graphical devices. Furthermore, these GUI components, like
the DSREs, will generally be developed by other organizations. We plan to integrate these GUI
engines in a similar way to the DSREs, where each GUI declares its capabilities at system startup.
The additional complication is that the dialogue system must be constantly updated on the
information currently being presented, and the options (i.e., the menu items, gestures, etc.) that
are currently available. In essence the active GUIs provide the context for the dialogue, and many
system actions may need to be accomplished via the GUI’s API.

While the challenges remaining are great, we remain optimistic that the partition of
responsibilities we have outlined in this paper, with the domain-general model of collaborative
problem solving, will provide the environment for building truly useful systems.
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Appendix

For further details on CWMS and related TRIPS-based systems, including available open source
code, the reader is referred to the following links:

® www.cs.rochester.edu/research/trips/lexicon/browse-ont-lex.html,
for browsing the TRIPS lexicon and ontology;

e trips.ihmc.us/parser, for on-line interfaces to the TRIPS parser customized for
different domains, including CWMS;

e github.com/wdebeaum/cogent, for source code for the generic dialogue shell based
on collaborative problem solving (Cogent), which includes the parser, dialogue
management and the CPS manager, but does not yet include the behavioral agent as
described in this paper.
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