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Abstract 
A wide range of potential dialogue applications involve collaborative problem solving between 
humans and complex automated reasoning systems, but most existing dialogue system models use 
very simple dialogue models not expressive enough to capture such behavior. Existing models can 
only be employed for very simple tasks (e.g., making a reservation, querying bus schedules). We 
describe a model of dialogue explicitly based on a model of collaborative problem solving that can 
support quite complex task-based reasoning. The key contribution is a domain-independent 
collaborative problem solving model that allows the user to interact with complex automated 
reasoning capabilities, including existing legacy systems, relatively easily. We describe this model 
and present a case study of the system running in a complex domain involving building and 
evaluating quantitative models of world processes (e.g., agriculture, economics, food security). 

1.  Introduction 

Most current dialogue systems support only simple tasks that can be encoded in a state-based 
dialogue model (see, e.g., Williams et al. (2016) and the Dialogue State Tracking Challenge1). 
Approaches to dialogue modeling based on the information state (Cooper, 1997), such as 
TrindiKit (Larsson & Traum, 2000) and its open-source successor trindikit.py (Ljunglöf, 2009), 
and OpenDial (Lison & Kennington, 2016) still support only very simple task and domain 
models. Such models are not expressive enough to support mixed-initiative dialogue systems with 
complex back-end reasoning systems.  

Early theoretical work of SharedPlans (Grosz & Kraus, 1996; Lochbaum et al., 1990) and 
plan-based dialogue systems (e.g., Allen & Perrault, 1980; Litman & Allen, 1987) laid good 
foundations for more general systems. These systems focused on defining the various 
communication acts that can be performed in terms of their effects on the dialogue participants 
beliefs and goals. Perhaps the best developed formalism is described by Cohen and Levesque 
(1990). Gabaldon et al. (2014) present an elaboration of such models within the ICARUS 
cognitive architecture. The concept of interpreting dialogue within an explicit model of 
collaborative problem solving (CPS) model was developed in (Allen et al., 2002). And while this 

                                                
 
1 https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge 
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has been the inspiration for a number of subsequent dialogue systems, the CPS model has never 
been implemented in a direct way.  

RavenClaw (Bohus & Rudnicky, 2009) supports a plan-based dialogue management 
framework that has been used to develop a number of dialogue systems. While its dialogue 
engine is task-independent and includes a number of generic conversational skills, its behavior, 
from language interpretation to response generation, is driven by task-specific dialogue trees (the 
plans), which can only describe simple tasks and have to be implemented anew for every 
application. The Disco system (Rich & Sidner, 2012) provides a more general framework tied to 
a plan-based representation of the task. It requires specifying the domain plans as hierarchical 
task networks that are developed for the particular application. While these plan-based 
approaches allow more complexity in the dialogues, they do not support dialogue that involves 
collaborative interaction with complex back-end reasoners, such as different planning and 
simulation engines, or complex systems for data analysis. 

The key contribution of our approach is that it uses a domain-independent model of collabo-
rative problem solving and language understanding to support interaction, allowing independently 
developed complex reasoning components to implement the task. The first steps towards this are 
described in Galescu et al. (2018), in which we introduced a domain-independent model of 
collaborative problem solving acts and a framework for deriving such acts based on both domain-
independent language understanding and intention recognition coupled with interaction with a 
domain-specific behavioral agent, which manages the back-end reasoning capabilities and is built 
from scratch for each application. We produced a generic dialogue shell that can be used to 
produce a complete dialogue system with this framework (see Galescu et al., 2018). 

This paper describes a further elaboration of this model in which the behavioral agent itself is 
also domain-independent and captures an abstract model of collaborative problem solving that is 
then easily instantiated with domain-specific reasoning components that can perform tasks such 
as planning, simulation, causal analysis, and so on. While this behavioral agent is domain-
independent, it is still task-dependent. In other words, it is general across applications where the 
dialogue involves problem solving. We demonstrate this model in a complex domain, namely 
collaborative building, running and evaluating models of world processes for purposes of 
predictions and planning interventions (which we call world modeling). 

1.1  Collaborative Problem Solving 

When agents are engaged in solving problems together, they need to communicate to agree on 
what goals to pursue, what steps to take to achieve those goals, negotiate roles, resources, and 
more. To underscore its collaborative aspect, this type of joint activity has been called 
Collaborative Problem Solving (CPS). Modeling the type of dialogues agents are engaged in 
during CPS must, therefore, take into account the nature of the joint activity itself. In the early 
2000s, Allen and colleagues described a preliminary plan-based CPS model of dialogue based on 
an analysis of an agent’s collaborative behavior at various levels: 

• An individual problem-solving level, where each agent manages its own problem-solving 
state, and plans and executes individual actions;  

• A collaborative problem-solving level, which models and manages the joint or collaborative 
problem-solving state (shared goals, resources, situations); 

• An interaction level, where individual agents negotiate changes in the joint problem-solving 
state;  
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• A communication level, where speech acts realize the interaction level acts. 

This model was refined in a series of publications, and several prototype systems, starting from 
the TRIPS system (Allen et al., 2000), have been developed within this framework (Allen et al., 
2002; Blaylock & Allen, 2005; Allen et al., 2007; Ferguson & Allen, 2007). While the CPS 
model provided the theoretical foundations, in practice, each of these systems involved the use of 
a domain-specific CPS model built specifically for each application, and encoding domain-
specific heuristics in order to support intention recognition.  

One of the main goals of our current work has been to enable linguistic interpretation and 
high-level intention recognition to be performed independently of the domain-specific problem-
solving mechanisms. The domain specific CPS would then specialize the higher-level intentions 
into concrete problem-solving actions and verify that such actions make sense in the domain 
context. As a consequence, in this model the back-end problem solvers would be relatively 
insulated from the need to worry about linguistic issues of sentence understanding, discourse and 
dialogue management. 

In Galescu et al. (2018), we describe a generic dialogue shell based on the CPS model that 
provides general language understanding and dialogue management capabilities. This dialogue 
shell has been used in a range of other systems, including a mixed-initiative system for planning 
and execution in a blocks world (Perera et al., 2017), learning about structures in blocks world 
(Perera et al., 2018), an assistant to a biologist for building, visualizing, running and modifying 
complex biological causal models (Gyori et al., 2017), helping a human composer create and edit 
music scores (Quick & Morrison, 2017), and playing cooperative games (Kim et al., 2018). Each 
one of these systems uses very different forms of domain-specific reasoning, but all use the same 
interface to the generic dialogue shell. In this paper we focus on pushing this model one step 
further by providing a generic behavioral agent performing the collaborative problem solving that 
could be used in different domains. This model is intended to support any application that that 
involves interpreting and analyzing situations, predicting outcomes and planning possible 
interventions. We illustrate this model by showing its use in one very general domain, namely 
world modeling, where the system collaborates with the user to model various world processes, as 
described in the next section. 

1.2  Case Study Domain: World Modeling 

The state of the art in world modeling involves an extremely labor-intensive process, requiring 
person-years of effort by highly trained modelers in order to construct models and run 
experiments to provide analysis of complex problems such as food security, migration and land 
use. The bulk of this effort does not actually involve constructing new quantitative models; rather, 
it is focused on determining how a scenario corresponds to a configuration of quantitative 
modeling engines, identifying or approximating the required data and parameter values needed, 
and then on the mechanics of running models over a set of scenario variations. For example, in 
building the Australian National Outlook (Hattfield-Dodds et al., 2015), over 50% of the effort 
was spent manually running simulations over multiple scenarios (e.g., manual linking of models, 
adjustment of parameters). 

The existing state of the art requires human analysts to do the bulk of the work, identifying 
the capabilities of each modeling engine, selecting the relevant ones, researching historical data to 
determine possible ranges of values, harmonizing the data for input and connecting the output of 
some engines to other engines, possibly via some transformation, and configuring the whole 
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network of modeling engines to perform the desired analyses. Often, solving a problem requires 
running a subset of models and caching the results in large datasets that are then accessed by the 
next stage of modeling. As a result, it is not feasible to construct such analyses in a timely manner 
to support the evaluation of options on ongoing problems critical to global security. 

The long term goal of the world modeling project is to develop a dialogue system that can 
provide analysts with a rich suite of tools with which they can quickly set up models to answer 
new questions, identify the necessary data, make the required assumptions, and then run complex 
experiments varying key parameters. This paper uses as the case study the first prototype of this 
system, called CWMS (Collaborative World Modeling System, pronounced “kooms”). In 
CWMS, the user and the system collaboratively explore different world modeling scenarios. The 
two communicate via dialogue in natural language and GUIs (e.g., visualization tools) to 
iteratively plan and refine simulation experiments together. 

2.  Collaborative Problem Solving Based Dialogue Systems  

A collaborative conversational agent must understand a user’s utterances, that is, obtain a 
representation of the meaning of the utterance, recognize its intention, and then reason with this 
intention to decide what to do and/or say next. In addition, the system must convert its own 
intentions into language and communicate them to the user. 

Figure 1 shows a conceptual diagram of our generic dialogue system. This follows the 
common separation of a conversational agent’s functionality into interpretation, behavior and 
generation, but where the separation lines are is critical for realizing the idea of isolating domain-
independent from domain-specific processing. From the user's utterance the TRIPS parser (Allen 
& Teng, 2017, Allen et al., 2018) constructs a logical form, which is a domain-independent 
semantic representation. The logical forms are further processed into surface speech acts, 
including social conversational acts, by considering the discourse context and performing 
language-based intention recognition. Different surface forms are also normalized (see Section 4 
for more details). The CPS manager is responsible for managing the collaborative problem 
solving state, i.e., managing the proposals, acceptances and so on required to reach agreement 
(mutual goals and beliefs). It converts the basic communicative acts into possible abstract 
communicative intentions. These communicative intentions then are further evaluated with 
respect to the actual problem-solving state, so they are not fully interpreted until they are accepted 
by the behavioral agent. The behavioral agent is responsible for operationalizing the 
communicative intentions into actions (which may involve planning, acting on the world, 
updating its knowledge of the situation, etc.). An autonomous behavioral agent might be able to 
plan and act on its own, but neither the behavioral agent nor the user can unilaterally decide on 

 
Figure 1: The abstract architecture showing domain and task general components (green), domain 
general components for problem solving tasks (orange), and domain specific components (pink). 
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the status of collaborative goals without a commitment from the other party. The two-way 
negotiation between the CPS manager and the behavioral agent includes communicating the 
behavioral agent's attitude towards shared goals, which the CPS manager will use to generate 
communicative acts for NL generation (such as accepting or rejecting a goal, or proposing a new 
one) and update the collaborative state.  

3.   An Overview of the CWMS System 

A more detailed view of the behavioral agent and back-end reasoners in the CWMS system is 
shown in Figure 2. As discussed above, the parsing, discourse interpretation and collaborative 
problem solving manager are mostly domain- and task-independent, but may use some domain-
specific knowledge sources. The behavioral agent is task specific (i.e., analyzing situations and 
evaluating courses of action), though domain independent. In other words, the behavioral agent 
encodes general problem solving behaviors such as planning, evaluating hypotheses, and 
acquiring and displaying information. It is designed to be able to work with any combination of 
domain-specific simulation and reasoning engines, shown in pink. Each simulation/reasoning 
module, as it comes online, sends a message registering its requirements (input) and capabilities 
(output). From these specifications, the planner will develop one or more viable plans linking the 
different modules to reach the desired simulation goal, by feeding the outputs of particular 
modules (possibly with data transformations) as inputs to other modules. 

We incorporated the following domain specific simulation modules into our initial system:  

1. DSSAT (Decision Support System for Agrotechnology Transfer; Hoogenboom et al., 2015): 
A point-based crop modelling system with detailed crop models for over 40 crops. 

 
Figure 2: The context for the CWMS behavioral agent showing components that are generic (green), 

task specific but domain general (orange), and task and domain specific (pink). 
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2. pSIMS (parallel System for integrating Impact Models and Sectors; Elliott et al., 2014): A 
framework for massively parallel climate impact simulations and global grid-based crop 
modelling, using as the underlying crop modelling engine DSSAT (and others). 

3. ABN (Agent Based Network; Marchand et al., 2016): An agent-based out-of-equilibrium 
food shock model that computes changes in import, export, consumption and reserves due to 
an injected shock to a country's crop production. 

4. TWIST (Schewe et al., 2017): A short term equilibrium model for computing market prices 
based on producer-side and consumer-side reserves, supply, demand, production and 
consumption. 

5. IMPACT (International Model for Policy Analysis of Agricultural Commodities and Trade; 
Robinson et al., 2015): A partial equilibrium multi-market economic model for analyzing 
long term scenarios (30 years) involving agriculture, trade and food security.  

Figure 3 shows an actual dialogue with the current system, which we will use to explore the 
system operation in the rest of the paper. As one can see, it starts with the user suggesting a goal 
(1), which is accepted and then the goal is refined by the system (2) and an initial course of action 
suggested (4). To support this interaction, the system reasoned that malnourishment is both an 
indicator of food insecurity and also that it is a value that can be computed by one of the 
reasoning engines. The system then constructs a plan to run a reasoning engine that can compute 
expected childhood malnutrition rates, based on baseline information on expected availability of 
food, etc. The answer computed is given in (6). The user then expresses a desire to elaborate the 
scenario based on predictions that the coming year will be an El Niño year. The system 
recognizes the intention to run a new analysis with the new assumption.  

To estimate the amount of change, CWMS has to construct a plan to estimate the change in 
crop yields if the coming year is an El Niño year. A key problem in prediction is that the future 
weather and other factors are of course unknown. Thus CWMS constructs a plan to estimate the 
effect of an El Niño year by interpolating results from simulations of 30 past years, weighting 
each result based on how much of an El Niño year it was and how distant the year is. Once the 
change in crop yield is computed, this change can then be fed through an economic model to 
compute the effect on food availability, and the change in food availability is then fed through a 
food security model that can compute malnourishment rates.  

The user follows up on the analysis with an open-ended question about what could be done to 
mitigate the effect of the El Niño event. The system does not have a specific answer. It does know 
a strategy to help the user explore causal connections, however, and so in response it generates a 
causal graph and generates utterance (12). Using this information the user asks about the effect of 
changing the planting date. The system knows a problem solving strategy for exploring the 
effects of changing variables, and so asks whether it should construct a simulation experiment 
that estimates the crop yields for a range of different planting dates. 

Once the user concurs, the system builds a plan for the experiment. Basically, it chooses a 
range of planting dates one week apart, starting one month before the typical planting date and 
running up to one month after. For each of these dates, it estimates the expected yield using the 
interpolation function for El Niño operating over the 30 years of past data. Once completed, it 
shows a plot of the results to the user and identifies the best option. While this is as far as we have 
space to discuss, the user could easily continue on, for instance asking for elaboration (e.g., OK, 
and how would that affect the malnourishment rates?), or exploring other options (e.g., What if 
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we could increase the amount of fertilizer that was available?), or pursuing some new strategy for 
dealing with the problem, such as shipping more food aid to the region. 

4.   System Details 

This section discusses some aspects of the system in more detail using the dialogue in Figure 3 as 
a running example, and elaborates on the components shown in Figure 2.  

4.1   Language and Discourse Processing  

While not the focus of this paper, to provide context this section describes briefly the language 
and discourse processing performed by the system. The TRIPS parser has an extensive grammar 
and an effective 100,000+ word semantic vocabulary defined in terms of a roughly 4000 concept 
ontology, described in more detail in Allen et al. (2018) and Allen & Teng (2017). After a first 

1 U: Can you analyze food insecurity in Sudan next year. 
2 S: Should we look at child malnourishment rates? 
3 U: OK. 
4 S: Should I compute a baseline estimate based on available data? 
5 U: yes 

System identifies a reasoning engine (IMPACT) that can estimate childhood 
malnourishment, and uses existing knowledge about Sudan (population, food 
availability, etc.) to estimate the number of malnourished children. 

6 S: OK. The percentage of malnourished children is about 39%. 
7 U: What if 2019 is an El Nino year? 

System builds a plan to estimate the difference in crop yields in Sudan in El Nino years 
by interpolating simulation results from 30 years of prior weather data.  

8 S: I can estimate the effect with the following plan. Does that look good? 
9 U: Yes 
10 S: OK. The percentage of malnourished children increases by 5%. 
11 U: What can we do to mitigate the increase? 

System creates and displays a causal graph based on the knowledge it has acquired from 
the declarations of the reasoning engines. 

12 S: Here is what I know about causal influences of malnourishment 
13 U: What would happen if we change the planting date? 
14 S: Shall I run simulations varying the planting date? 
15 U: Yes 

System creates a plan to run a series of simulations that vary the planting date parameter, 
again estimating yields for an El Nino year by interpolating over results obtained from 
simulations of the past 30 years. The plan then assembles the results and presents to the 
user in a chart. 

16 S: The best scenario involves planting crops one week earlier than usual. 
 

Figure 3: A dialogue between a user (U) and the CWMS system (S). 
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Figure 4: A fragment of the parse for “Can you analyze food insecurity in Sudan next year”. 

pass that performs named entity recognition, using geographical term databases, the parser 
produces a representation in a unscoped modal logic (see Allen, 1995; Manshadi et al., 2008). A 
fragment of the parse for the first sentence is shown in graphical form in Figure 4. 

 The logical form is then passed to the interpretation manager, which performs a number of 
functions, most notably: (1) utterance segmentation; (2) surface speech act identification; (3) ref-
erence resolution; and (4) ontology mapping. Utterance segmentation handles situations where 
the user might perform multiple speech acts in a single utterance, such as an acceptance and an 
assertion (e.g., Yes. I’ll get the pizza). Segmentation is accomplished by identifying various coor-
dination structures in the logical form produced by the parser. The interpretation manager then 
proceeds to process each speech act individually, updating the discourse context after each one.  

The second phase is identification of the surface speech act, which encodes the conventional 
ways that basic communicative intentions can be realized. The basic speech acts include 
assertions (TELL), commands (REQUEST), acknowledgements, acceptance and rejection acts, 
proposals, and various forms of questions and answers. It uses patterns based on convention 
linguistic forms to identify the range of likely speech acts. For example, the sentence Can you 
open the door would be identified most likely to be a REQUEST (to open the door), with a less 
likely option that it is a true yes/no question about the ability to open the door. This phase of 
processing provides a significant canonicalization of the range of possible ways speech acts can 
be realized. For instance, all of the following acts are identified as asking a question about the 
time: What is the time? Can you tell me the time? Do you know the time? Tell me the time. I want 
to know the time. For the most part, these are all interpretations that could be derived from first 
principles using the plan based model of speech acts (Allen & Perrault, 1980). With our current 
approach, however, these so-called indirect forms identified by inference in the plan-based model 
are derived directly and with no additional “cognitive effort”, and thus is consistent with what we 
know of human processing from psycholinguistic research. The system has slightly less than one 
hundred hand-built rules that encode conventional common indirect forms found in conversation. 
Note the rules do not identify a single interpretation. Rather, they identify a ranked set of possible 
interpretations based on typical usage and the current discourse context. These options are passed 
to the next phase which can then use additional context to identify the interpretation that was 
actually intended. 

 Back to our running example, the sentence Can you analyze food insecurity in Sudan next 
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year, while literally a yes-no question about ability, is mapped to a REQUEST act as the first 
choice. Namely, it is a request that the system perform an analysis action (ONT::SCRUTINY) of 
the food insecurity situation in Sudan. 

The next phase in the interpretation manager is reference resolution, where referring 
expressions such as anaphora and definite descriptions are connected to previously mentioned 
terms in the discourse. As typical with the first utterance in a dialogue, there are no anaphoric 
expressions in our example sentence. Note that external name references have already been 
handled by the named entity recognition component that was part of preprocessing. Thus, 
external names are already tagged with their referential information before parsing.  

In many cases, the logical form produced by parsing is transformed into a new representation 
based on the domain ontology, using an ontology mapping system. In systems where such 
mapping rules are defined, we can automatically compute which TRIPS ontology types 
correspond to domain-specific types and prefer these senses.  

This process results in the surface speech act that is the starting point in Figure 2.  

4.2  Collaborative Problem Solving Management 

The output of the discourse interpretation phase is a speech act hypothesis which is the input to 
the collaborative problem solving management phase. The CPS manager is designed to interpret 
and drive the interactions that embody the collaborative problem solving negotiation between the 
user and the system (i.e., the interaction level in the above discussion). It is an evolution of the 
Collaborative Problem Solving (CPS) model described in (Allen et al., 2002) with a particular 
focus on separating the domain-independent aspects of CPS from the domain-specific reasoning. 
It is mainly concerned with interpreting and driving the interaction that establishes and manages 
the collaborative problem state, by means of CPS acts such as proposing a goal, accepting or 
rejecting a proposal, proposing the refinement of a goal, or a solution to a problem. One might 
immediately realize that this cannot be done accurately without reasoning about the domain-
specific intentions as well. For instance, in our running example, the sentence Can you analyze 
food insecurity in Sudan next year, which has been mapped to a surface speech act REQUEST, is 
deemed likely to be a PROPOSE of a new top level goal (since no goal has been established so 
far, this being the first utterance). All this can be done based on the current problem solving 
context (i.e., no goal has been agreed to yet) and the form of the surface speech act (i.e., a 
REQUEST). But this hypothesis cannot be confirmed without checking that ‘analyzing food 
insecurity’ is a reasonable collaborative goal for the user to propose to this system. This check of 
course requires domain-specific knowledge and reasoners. Some other REQUEST acts, such as 
Can you repeat what you said would not be confirmed as a relevant shared domain goal and thus 
would not be interpreted as a PROPOSE of a shared goal. Rather, it would be interpreted using a 
model of the communication process and grounding.  

 In order to make the system as domain-independent as possible, we balance this tension 
between the desire for domain-independent processing and the need for domain specific 
processing by having the CPS manager behave as a hypothesis generator: It generates hypotheses 
about the actual CPS act performed and requests the behavioral agent to evaluate their likelihood 
given the current problem solving state. If the behavioral agent deems the hypothesis acceptable, 
then the CPS manager commits the act and thus changes the CPS model, thereby identifying what 
the system believes was the intended interpretation. If the behavioral agent finds a hypothesis 
unacceptable, the CPS manager can then suggest another possible interpretation, and continue to 
do so until an acceptable one is found, or all hypothesized interpretations are exhausted. This 
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Figure 5: The EVALUATE-COMMIT cycle. 
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evaluate-commit cycle (see Figure 5) is critical for enabling intention recognition that exploits 
strong linguistic context (i.e., the exact phrasing of utterances and the discourse context) as well 
as the strong context of the collaborative problem solving state, and domain reasoning provided 
by different back-end specialized reasoning engines.  

Continuing with our running example, the following set of messages would be sent to 
establish the joint goal to analyze food insecurity in Sudan, where C1 is an identifier to the 
semantic representation of the action of analyzing food insecurity in Sudan, which is formally 
specified in the elided context arguments. 

CPS Manager ® BA: (EVALUATE :content (ADOPT :id O1 :what C1 :as (GOAL)) :context …) 
BA ® CPS Manager: (ACCEPTABLE :content (ADOPT :id O1 :what C1 :as (GOAL)) :context …) 
CPS Manager ® BA: (COMMIT :content (ADOPT :id O1 :what C1 :as (GOAL)) :context …) 

In addition, the CPS manager issues a directive to the generation component to produce an 
acceptance of the proposal (the OK in utterance 2 in Figure 3). Once the acceptance is generated, 
the system believes there is a shared joint goal with the user to analyze the food security situation 
in Sudan.  

Looking at the formalism in a bit more detail, we see that a CPS act itself consists of two 
main parts: an operation and a collaborative problem solving object. The operations model the 
interactions that the two agents take to establish joint intentions, including actions such as 
ADOPT and ABANDON whereas the CPS objects are goals, constraints, situations, etc. A brief 
summary of the key CPS acts is shown in Table 1. 

Each of these acts may take a number of arguments that provide further context for the 
operation. For instance, the ADOPT act might introduce a top-level goal, or might introduce a 
goal that is a subgoal of an existing goal, e.g., a top level goal can be introduced with (ADOPT :id 
O1 :what C1 :as (GOAL)), whereas a subgoal could be (ADOPT :id O2 :what C2 :as (SUBGOAL :of 
O1)). More detail on the architecture of our CPS manager can be found in Galescu et al. (2018).  

4.3   Defining Domain-Specific Capabilities 

Before discussing the behavioral agent, we should address how the domain-independent problem 
solving that the behavioral agent implements relates to the domain-specific reasoning and 
knowledge capabilities for the application domain. We will refer to these as the domain-specific 
reasoning engines (DSREs). At system startup time, each DSRE identifies its capabilities in terms 
of its input and output parameters indexed into a common ontology. This information is then used 
by the behavioral agent as needed when it needs information that matches one of the output 
parameters. Each parameter declaration includes, as appropriate, key information such as the 
required units for the values. In addition, each input parameter is declared as being required (i.e., 
the values must be provides) or optional (i.e., generally this means the DSRE has default values if 
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a value is not specified). In world modeling, many of the DSRE’s require or produce table-based 
data (e.g., the crop yields in different grid locations over ten years). To allow this the 
specification language allow declaration of table formatting parameters. 

As an example, Figure 6 shows how the DSRE that encapsulates the pSIMS system identifies 
its capabilities. pSIMS computes crop production and other values for an area and timeframe and 
is described in Elliot et al. (2014). Looking at the declarations, we see this component is defined 
in terms of a set of input parameters and output parameters that describe what it can compute. All 
parameters are identified by an :ID-CODE and their data format is specified in the :FORMAT 
and possibly a :UNIT field if it is a numerical quantity. For instance the INPUT parameter 
LOCATION-FILE in  Figure 8 has the ID-CODE LOCATION and a FORMAT value of 
(RASTER “GTIff” 180 90). Key to enabling the interoperability on different components is the 
declaration of parameters in terms of a common ontology. For this initial prototype we hand-built 
the ontology drawing from a range of sources, including the ICASA ontology (White et al., 
2013), the DSSAT parameter codes, and a few generic ontology types from the TRIPS ontology 
(e.g., LOCATION, TIME). The ID-CODE is drawn from this ontology and allows the system to 
link the same parameters between different DSREs. So, from this declaration we know this 
parameter identifies a LOCATION, and, furthermore, one that is specified as a gridded 
representation of the area of interest, i.e., (RASTER “GTIff” 180 90). The system also knows of 
other ways to represent locations, including ISO country codes, which are used by other DSREs. 
The planner uses a component called SPACEMAN that can map locations between different 
location formats as necessary. SPACEMAN also can map from natural language descriptions 
(e.g., country names) to various location formats as well.  

Table 1. Key collaborative problem solving acts. 
 

Topic ACT Gloss Example Sentence 
 
 
 
 

Goals 

ADOPT Introducing a goal Let’s plan food aid for Sudan. 

SELECT Focusing on existing goal Let’s return to the food problem. 

DEFER Temporarily putting a goal 
aside 

Let’s work on this later. 

ABANDON Abandoning a goal I don’t care about this anymore. 

RELEASE Completing a goal We’re done. 

 
Knowledge 

ASSERTION Making a claim It's too hot to grow rice. 

ASK-IF Asking a yes/no question Is it too hot? 

ASK-WH Asking a WH question How cool does it need to be? 

 
 
 

Reporting 
Problem 

Solving Status 

ACCEPTABLE Goal is acceptable OK. That’s good. 

UNACCEPTABLE Goal is unacceptable That doesn’t make sense. 

REJECTED Goal is refused No. I won’t do that. 

FAILURE Problem solving failed I can’t do that. 
I don’t have enough wheat. 

ANSWER Satisfying a question We need cool nights. 

EXECUTION-STATUS Reporting on progress in 
problem solving 

I’m running the simulation. 
I found all the distribution areas. 
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 As another example, the FEN_TOT input parameter encodes the amount of fertilizer used 
and has an ID-CODE drawn from the ICASA ontology. pSIMS requires the amount to be 
specified in kg/hectare. Other modules may require fertilizer amounts to be expressed in other 
units; the planner uses a specialized component to convert between different unit types as desired. 
Note that FEN-TOT is actually a function dependent on the crop, location and planting year.  

The declarations also specify whether the parameter must be specified in order to run the 
component (i.e., it is REQUIRED), or is optional. FEN_TOT is optional and, if not specified, will 
be instantiated with a default level that the application has based on the location. The CROP-ID, 
location and planting year are all required.  

Finally, a key part of the parameter declaration is the explicit representation of tabular data. 
Often a component will produce a table as its result. For example, the PROD parameter defined in 
the output declaration is a table that lists the production for each crop, location and planting time 
specified in the inputs. Such tables must be explicitly defined so that the planner can extract in-
formation as necessary to prepare input to another component. For instance, once the production 
per crop per location per year is computed, the planner might sum over the location grid elements 
to produce a table that represents the total production for the whole area (e.g., South Sudan). In 
other cases, the planner might plan a series of calls to a component that iterates over the values in 
a table, and then collects all the results and constructs a new table for use as input to another 
DSRE. Given that DSREs are systems built by external parties with different uses in mind, the 
planner must be flexible enough to accommodate the data idiosyncrasies of each one. The careful 
declaration of the input and output parameters provides the information to accomplish this. 

(DEFINE-SERVICE :NAME PSIMS :COMPONENT CROPMODELLER  
:INPUT 

( (INPUT :NAME LOCATION-FILE :GLOSS "image file of geographic region to simulate"  
    :ID-CODE LOCATION :FORMAT (RASTER "GTiff" 180 90) :REQUIREMENTS :REQUIRED) 

(INPUT :NAME CRID :GLOSS "identifier of crop to simulate"  
:ID-CODE CRID :ID-CODE-CONSTRAINT (MAZ PML RIC SGG SBN WHB WHD WHT)  
:FORMAT ONT::CODE :REQUIREMENTS :REQUIRED) 

(INPUT :NAME PLYR :GLOSS "planting year(s) to simulate" 
:ID-CODE YEAR :ID-CODE-CONSTRAINT (RANGE 1980 2010) 
:FORMAT (OR ONT::NUMBER ONT::LIST) :REQUIREMENTS :REQUIRED) 

(INPUT :NAME FEN_TOT :GLOSS "total nitrogen in applied fertilizer" 
:ID-CODE FEN_TOT :ARGUMENTS (:LOCATION-FILE :CRID :PLYR)  
:UNIT (RATIO ONT::KG ONT::HECTARE) :FORMAT ONT::FUNCTION :REQUIREMENTS :OPTIONAL) 

…) 
:OUTPUT 

   ( (OUTPUT :NAME PROD :GLOSS "global sum of harvest weight at maturity"  
:ID-CODE PROD :UNIT ONT::MEGATONNE :ARGUMENTS (:LOCATION-FILE :CRID :PLYR)  
:FORMAT (TABLE :PROD :LOCATION-FILE :CRID :PLYR) 

…) 
 

Figure 6: Excerpts from a declaration of a domain-specific reasoning engine. 
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4.4  The Behavioral Agent 

We can now describe the CWMS behavioral agent. In our previous applications, the behavioral 
agents have always been domain specific and built from the ground up for each domain. In 
CWMS, however, we have developed a behavioral agent that captures the generic problem 
solving process itself, abstracted away from a specific domain. This distinction is similar to that 
found in general purpose planning systems, where the planner itself is domain independent and 
the domain specific aspects are found in the definitions of the operators. However, this corre-
spondence only goes so far, as traditional planning is only a small part of overall problem solving 
behavior. Other behaviors in CWMS include building causal models of phenomena, planning and 
evaluating interventions, and acquiring data from online sources and user interaction. Table 2 
summarizes some different problem solving tasks that are present in the world modeling domain. 
Note that any one dialogue will involve multiple problem solving behaviors (e.g., to build a 
simulation workflow one might first need to build a plausible causal model).  

There are two main functions that each collaborative problem solving task must perform: 
intention recognition (i.e., given we are engaged in the current PS task, what does the user want 
to do now?) and behavior (i.e., once we know the new goal/subgoal in the task, how do we 
accomplish it?). The intention recognition function supports the Evaluate/Commit protocol 
described above, and the behavioral agent interacts with the CPS manager to arrive at an 
interpretation of the latest user move (be it from language or an action in a GUI). The input to the 
intention recognition is a plausible CPS act computed by the CPS manager, which is then 
evaluated in the context of the current problem solving task. The behavioral agent returns a 
response to the CPS manager that accepts, conditionally accepts or rejects the interpretation. 
Once an interpretation is agreed upon and committed, the behavioral agent then enters the 
behavior phase to perform the appropriate actions leading to a response.  

Looking in more detail, each problem solving task is represented as a state transition network, 
namely a set of states where transitions between the states are labelled with a CPS act that signals 
the transition. Associated with each state is code that implements the system’s “private” problem 
solving behavior which ultimately results in an attempt to establish the next shared CPS act that is 
captured in one of the outgoing transitions. 

In other words, the intention recognition process involves either initiating a new problem 
solving task, or identifying the correct transition to take within the existing task. Once the 
transition is taken, the behavioral agent then performs the behavior associated with the new state 
to further the problem solving interaction. This behavior might involve planning, running 
simulations, acquiring data, or other reasoning, and ultimately terminates at the stage where user 
agreement would be necessary to continue (i.e., the system needs to initiate the next collaborative 
problem solving act). The range of possible CPS acts will be captured by the set of outgoing 
transitions from the state. The new CPS act is proposed to the CPS manager, and if it is agreed to 
by the user, the transition is taken to the next problem solving state in the task. 

Note a key difference between the activity in the CPS manager and the activity of the 
behavioral agent: The CPS manager models the individual interactions between the system and 
user, while the behavioral agent models the problem solving state in terms of committed (i.e., 
mutually agreed) problem solving actions. In other words, the CPS manager models the dialogue 
in terms of proposals, acceptances, rejections, and so on. The behavioral agent, on the other  
hand, models the interaction in terms of the mutually agreed problem solving actions (e.g., we are 
jointly analyzing food insecurity, we are agreeing to make a certain assumption, we are jointly 
building on a simulation model, etc.).  
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To make this clear, consider some of the interactions that occur in the example dialogue of 
Figure 3. Specifically, let’s start with the first six interactions repeated here. 

(1)  U: Can we analyze food insecurity in Sudan next year. 
(2)  S: Should we look at child malnourishment rates? 
(3)  U: OK. 
(4)  S: Should I compute a baseline estimate based on available data? 
(5)  U: yes. 
(6)  S: OK. The percentage of malnourished children is about 39%.  

Figure 7 shows a path through the situation analysis task that is invoked and executed during 
these six utterances. Note this is a single path through the model that captures this one dialogue. 
Other dialogues would take other paths in the model that are not shown. 

As discussed earlier, statement (1) is transformed into a REQUEST to analyze food 
insecurity, which the CPS manager converts to a PROPOSAL of a new goal that the behavioral 
agent identifies as initiating the situation analysis task, where the condition of interest is food 

Table 2: Some of the key collaborative problem solving activities in world modeling. 

Problem Solving 
Task 

Description Examples of Goal 
Statements 

 
 
1 
 

 
 
Building causal 
models 

Collaboratively build a causal model that 
captures key influences on a certain end 
condition, or alternatively, find a model 
that explains the relationship between two 
conditions (using prior knowledge, 
knowledge from reading, and user input) 

What are the key 
influences affecting food 
insecurity? 
How does a drought 
affect food availability? 

 
 
2 

 
Planning and 
running simulation 
workflows 

Given a causal model, collaboratively plan 
a workflow of existing simulation engines 
that could quantify the causal model (using 
knowledge of available simulation engines, 
and user input, especially with respect to 
generating approximations) 

What are the predictions 
for food insecurity in 
Sudan next year? 
How is migration 
affecting population at 
risk? 

 
 
3 

Compare effects of 
varying input values 
(e.g., intervention 
analysis) 

Given a causal model and/or a simulation 
workflow, collaboratively plan a series of 
runs under different conditions in order to 
explore how one condition affects another. 

How are crops affected if 
next year is an El Nino? 
What planting date would 
maximize the crop yield? 

 
 
4 

 
 
Acquiring and 
preparing data sets 

Given a set of information needs, 
collaboratively acquire or estimate this 
information using existing databases, 
acquiring data through reading existing 
documents, and developing approximations 
as necessary with the user. 

What are the soil 
characteristics in eastern 
South Sudan? 
How much maize was 
produced in each region 
of Sudan last year? 

 
 
5 

 
 
Situation analysis 

A very general behavior that typically 
invokes the other more specific behaviors. 
Given a problem statement to understand a 
situation, collaborate with user to facilitate 
their understanding of the actual conditions 
and possible interventions 

 
Let’s analyze food 
insecurity in Sudan for 
the next two years 
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insecurity, the location of interest is Sudan and the time of 
interest is next year, namely 2019. Once the COMMIT 
message is received by the behavioral agent, the first 
transition shown in Figure 7 is followed and the behavioral 
agent is in state SA-1. The behavior associated with this 
state is to identify how an abstract condition (i.e., food 
insecurity) might be analyzed in terms of indicators that 
can be measured. Based on knowledge of a component 
from the IMPACT system, the system knows that the 
percentage of malnourished children is a possible indicator 
of food insecurity. The behavioral agent sends a proposal 
back to the CPS manager to reach agreement on using 
childhood malnutrition as an indicator (utterance 2). Once 
agreement is reached (utterance 3), the transition from SA-
1 to SA-2 has been satisfied. Note this same model would 
account for a different dialogue where the user performs 
utterance (2) and the system performs utterance (3). Since 
the transitions are joint actions, it does not matter who 
actually made this initial proposal. 

State SA-2 involves deciding on a method to estimate 
the indicator. There are a number of possibilities a full 
system might consider. For instance, it might check if there 
is existing concrete data regarding the condition at the time 
and place (unlikely, as we’re looking at the future), or it 
might search the web for documents that offer predictions 
and analyses for the condition at the time and place. The 
current prototype, however, is limited in its ability to search 
and retrieve such information from online sources. This is 
an area for future work. A third strategy, which is 
implemented, is to see if the system has any reasoning engines that could compute an estimate for 
the indicator. In this case, the system does have such a component, namely a part of the IMPACT 
system that can compute food insecurity measures. The system proposes to the user that it 
compute an estimate based on baseline information (utterance 4). Once this is accepted (in 
utterance 5), the transition from SA-2 to SA-3 is made. In SA-3, the system invokes the planner 
to estimate the percentage of child malnourishment in Sudan in 2019. In this case, the plan is 
trivial, as the IMPACT system contains all the default data needed to compute the estimated 
value. Once this plan is executed (i.e., the IMPACT system has been invoked and returns a 
result), the behavioral agent then sends the CPS manager a request to INFORM the user of the 
result (utterance 6) as a way to establish the transition at the bottom of Figure 7.  

The next segment of the dialogue involves more complex behavior: 

(7) U: What if 2019 is an El Nino year? 
(8) S: I can estimate the effect with the following plan. Does that look good? 
(9) U: Yes. 
(10) S: OK. The percentage of malnourished children increases by 5%. 

The intention recognition for utterance (7) is performed in the context of the AGREE-ON-
VALUE transition from state SA-3 in Figure 7. The CPS manager is expecting an acceptance or 

 
Figure 7: A trace through the 

situation analysis problem solving 
model underlying the dialogue. 

SA-1 
[identify indicators]

ANALYZE [FOOD_INSECURITY] 
[SUDAN, 2019] 

INDICATOR [CHILD_MAL, FOOD_INSECURITY]
[SUDAN, 2019] 

SA-2 
[choose estimation 

method]

COMPUTE-BASELINE [CHILD_MAL]
[SUDAN, 2019] 

SA-3 
[estimate indicator]

AGREE-ON-VALUE [CHILD_MAL]
[SUDAN, 2019] 

SA-4 
[choose next action]
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rejection of utterance (6), however utterance (7) appears to be neither. This is commonplace in 
human dialogue, in which a proposal can be implicitly accepted if the response can be interpreted 
as continuing the current problem solving process. The system does this by attempting intention 
recognition on utterance (7) as though utterance (6) had been accepted (assuming the response 
was not an explicit rejection!). Utterance (7) is recognized as a proposal to compute an alternative 
analysis assuming that 2019 is an El Niño year, an expected continuation of the problem solving 
process. The behavioral agent receives an acceptance of the value for childhood malnutrition 
from the CPS manager, which completes the transition to SA-4 at the bottom of Figure 7.  

Following this, the CPS manager sends the behavioral agent the (already derived) 
interpretation of utterance (7), and the behavioral agent in response initiates a subtask to compute 
and compare a set of results with the control parameter being whether 2019 is an El Niño year or 
not. The first step of this new subtask is to initiate a further subtask to identify a causal model that 
relates the target condition (i.e., child malnutrition) with the control condition (2019 as El Niño 
year or not). The CWMS system attempts to construct such a model using the knowledge it has of 
the domain-specific reasoning engines that are available, as finding a chain through the input and 
output parameters of these models would suggest a method for computing the values. An initial 
chain linking the two parameters is shown in Figure 8. 

While this identifies a possible causal chain through a suite of known reasoning engines, 
there are problems that need to be resolved before this would an executable workflow. First of all, 
each of the DSREs have other input parameters that are required – some values can be identified 
in the immediate context (E.G., LOCATION is Sudan, year is 2019, etc.), others might need to be 
retrieved or looked up (e.g., what are the main crops grown in Sudan), and others might need to 
have approximations developed in collaboration with the user.  

A key area where approximations must be used has to do with weather. The agricultural 
models used in pSIMS and DSSAT need detailed day-to-day models of the weather to simulate 
the growth of the crops. However, we clearly don’t have such a model of the weather in 2019 as it 
hasn’t happened yet! In fact, for pSIMS we only have weather records for the years 1980 to 2010. 
To deal with this problem, we developed a weather estimation operator in CWMS that runs 
desired configurations on past weather data, and then uses an interpolation function to produce an 
approximation of the values for a future date. As a default interpolation, when we have no insight 
into the future weather, we use a simple weighted average that gives slightly more relevance to 
more recent years. If we know something about the future weather, however, say that it is an El 
Niño year, then we can use an interpolation function over the past years where previous El Niño 

 
Figure 8. A initial causal graph connecting weather to food insecurity.  
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Figure 9. Revised plan adding weather estimation to predict future production. 
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years are given more weight. Using this capability CWMS revises its plan in Figure 8 to add the 
segment approximating yields in 2019, as shown in Figure 9. 

Once the system has what it thinks is a valid plan, it then presents it to the user and asks for 
comments and/or approval (utterance 9). At this stage the user might suggest modifications and 
revisions to the plan, or completely reject or accept it. In our example, the user accepts the plan 
(utterance 10) and then the system executes the plan under the two control conditions 
(unspecified default weather vs. El Niño weather).  

Plan execution for the most part involves invoking the DSREs in the appropriate order, after 
making necessary data conversions to match the required data formats for each DSRE. Once 
CWMS completes the execution, it summarizes the effect of the new assumption in terms of the 
change in rate of malnourished children (utterance 10). Note that utterance (11) involves yet 
another implicit acceptance of the result. Once this is recognized, the subtask of comparing 
effects is completed and the behavioral agent is once again back in state SA-4 and ready to 
interpret the user’s new request, which is how to mitigate the effects.  

5.  Concluding Remarks 

We have discussed a dialogue system framework that can manage dialogues for significantly 
more complex tasks than possible with previous approaches. Furthermore, the system is general 
across domains that can be cast as collaborative problem solving. We have shown how the 
dialogue management can be integrated with domain-dependent reasoning engines based solely 
on the declaration of their reasoning capabilities in an agent-based framework. The resulting 
system can engage in complex collaborative problem solving as required for modeling world 
processes. We note that the current system is only a prototype and much work remains to be done 
to produce a robust fully functional system that can be used by analysts.  

One of the key challenges moving forward is that, unlike the example dialogue we used 
above that was language dominant, complex world modeling will often require significant use of 
GUIs for communication. The system needs to be able to present information and summarize 
results using maps, charts and other graphical devices. Furthermore, these GUI components, like 
the DSREs, will generally be developed by other organizations. We plan to integrate these GUI 
engines in a similar way to the DSREs, where each GUI declares its capabilities at system startup. 
The additional complication is that the dialogue system must be constantly updated on the 
information currently being presented, and the options (i.e., the menu items, gestures, etc.) that 
are currently available. In essence the active GUIs provide the context for the dialogue, and many 
system actions may need to be accomplished via the GUI’s API.  

While the challenges remaining are great, we remain optimistic that the partition of 
responsibilities we have outlined in this paper, with the domain-general model of collaborative 
problem solving, will provide the environment for building truly useful systems. 
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Appendix 

For further details on CWMS and related TRIPS-based systems, including available open source 
code, the reader is referred to the following links:  

• www.cs.rochester.edu/research/trips/lexicon/browse-ont-lex.html, 
for browsing the TRIPS lexicon and ontology; 

• trips.ihmc.us/parser, for on-line interfaces to the TRIPS parser customized for 
different domains, including CWMS; 

• github.com/wdebeaum/cogent, for source code for the generic dialogue shell based 
on collaborative problem solving (Cogent), which includes the parser, dialogue 
management and the CPS manager, but does not yet include the behavioral agent as 
described in this paper. 

 


