

Building a *search engine* to find *environmental* and *phenotypic factors* associated with *disease and health*

Chirag J Patel Northeast Big Data Innovation Hub Workshop 02/24/17

DEPARTMENT OF Biomedical Informatics chirag@hms.harvard.edu @chiragjp www.chiragjpgroup.org

P = G + E

Phenotype P = G + E Type 2 Diabetes Cancer Alzheimer's

Gene expression

Phenotype Genome ╺╺┻╼ Variants Type 2 Diabetes Cancer Alzheimer's Gene expression

Phenotype Genome Environment Variants Infectious agents Type 2 Diabetes **Nutrients** Cancer **Pollutants** Alzheimer's Drugs Gene expression

G

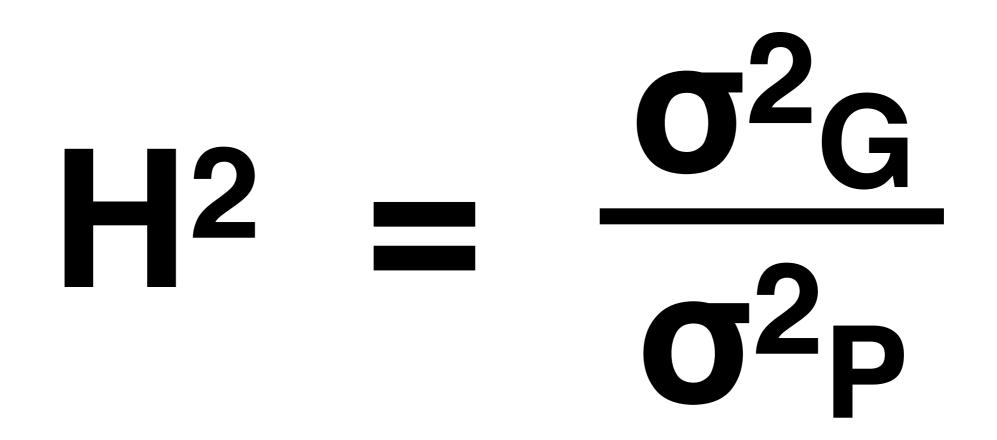
We are great at **G** investigation!

over **2400**

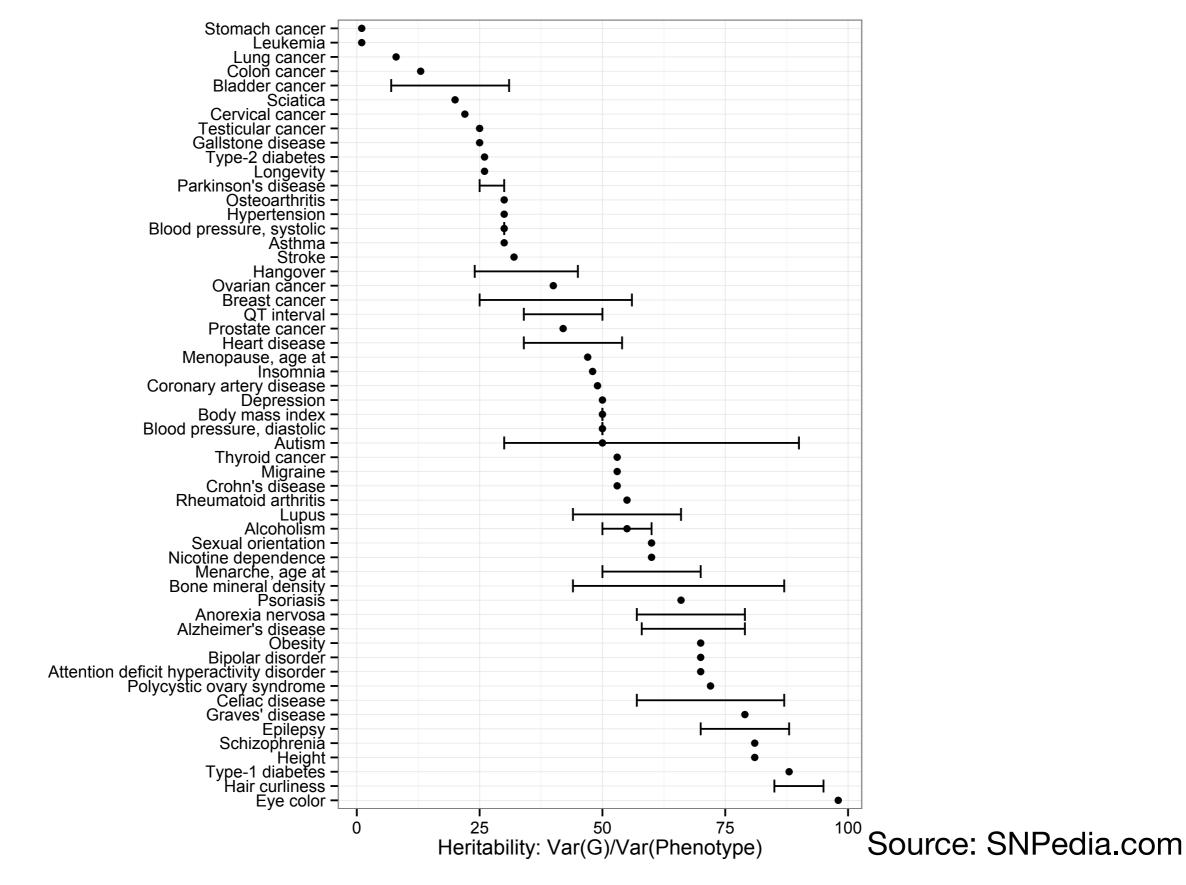
Genome-wide Association Studies (GWAS) https://www.ebi.ac.uk/gwas/

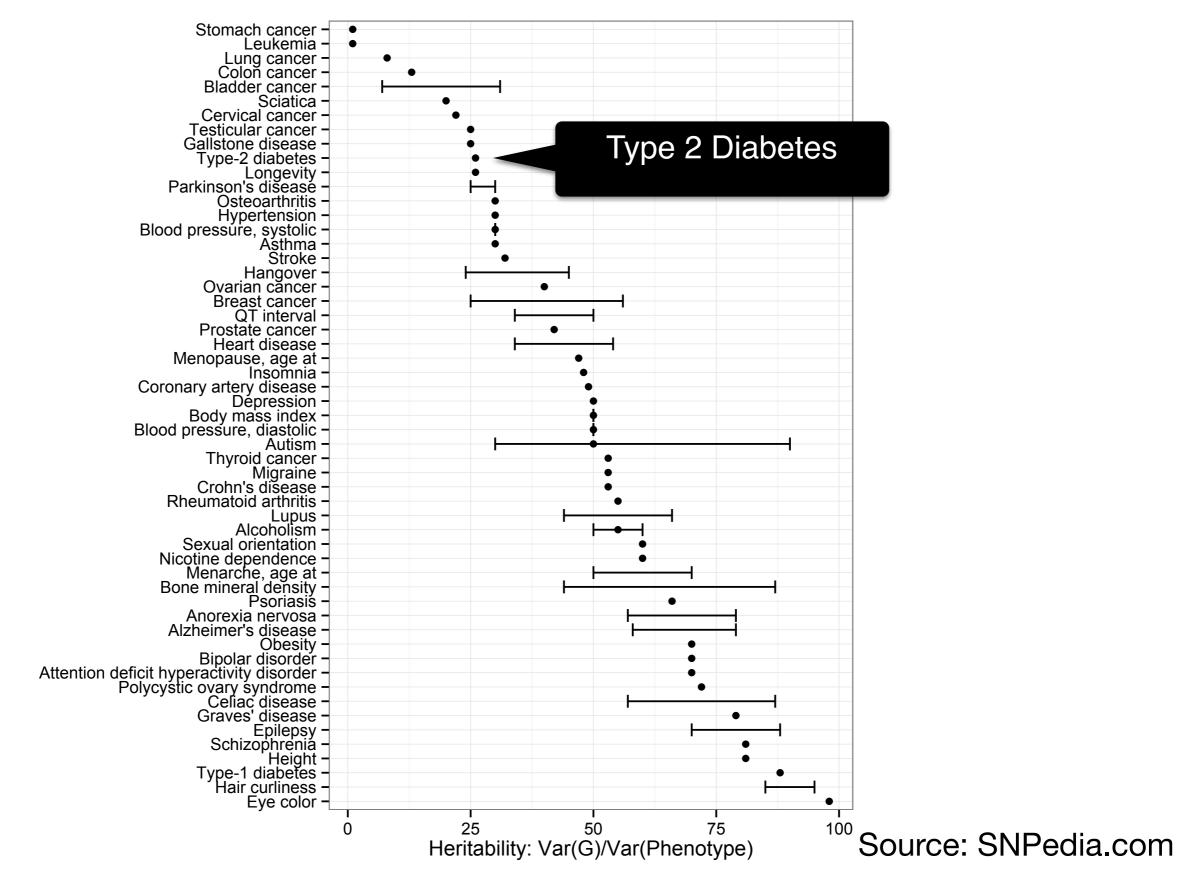
Nothing comparable to elucidate *E* influence!

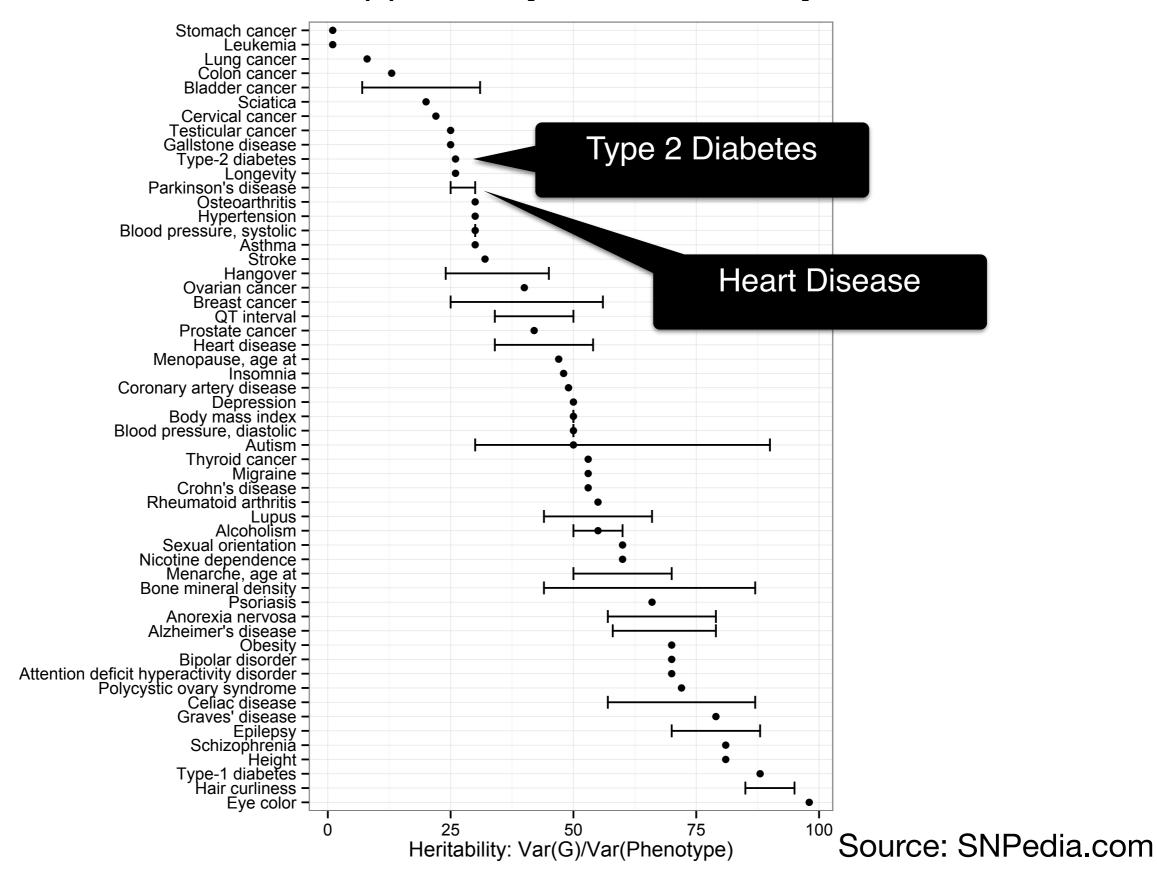
We lack high-throughput methods and data to discover new *E* in *P... until now!* *Heritability* (H²) is the range of phenotypic variability attributed to genetic variability in a population

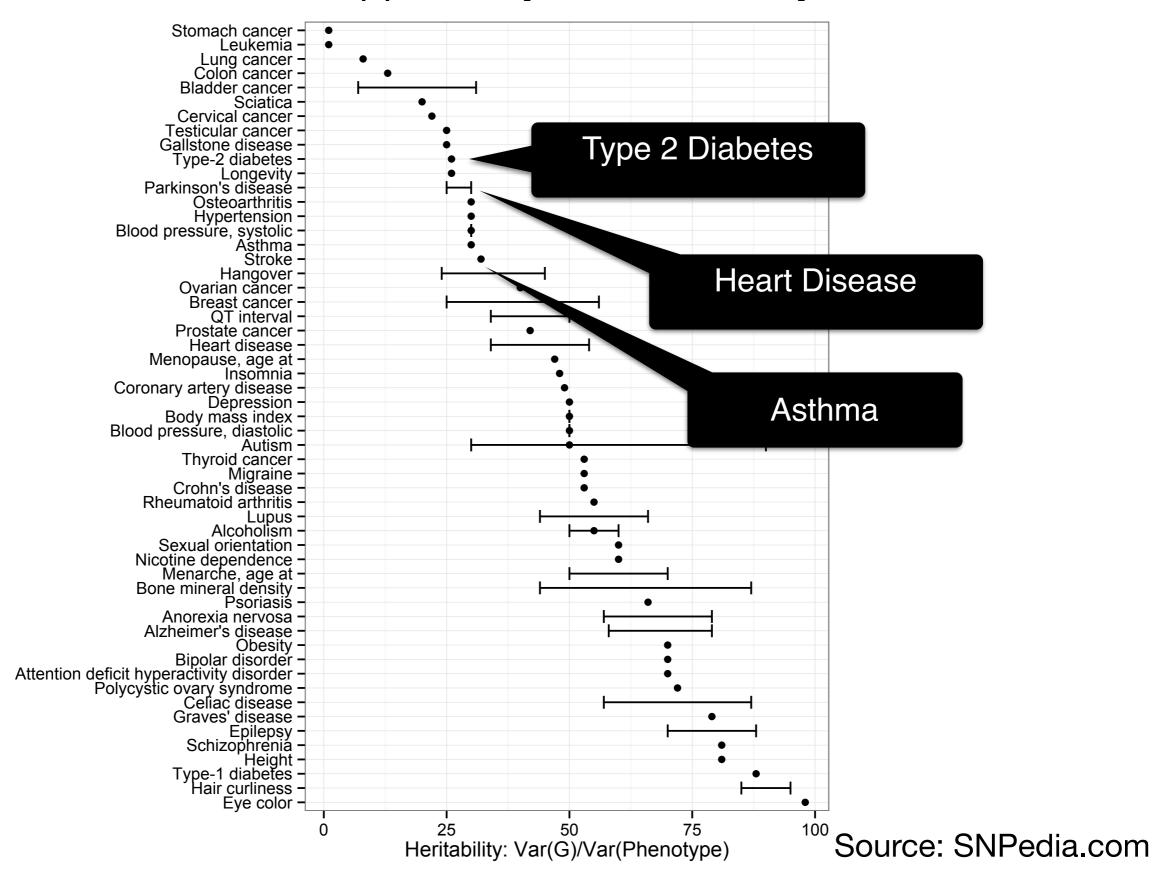


Indicator of the proportion of phenotypic differences attributed to **G**.

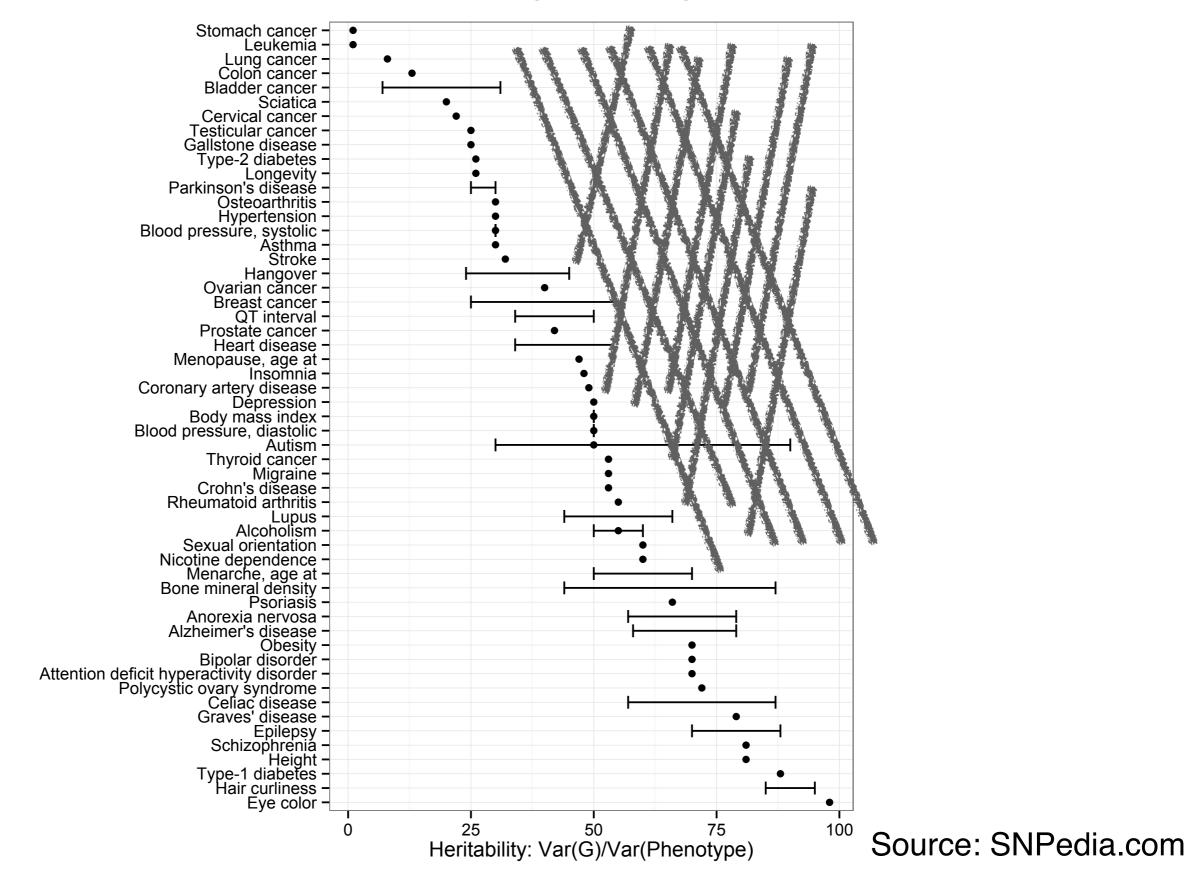




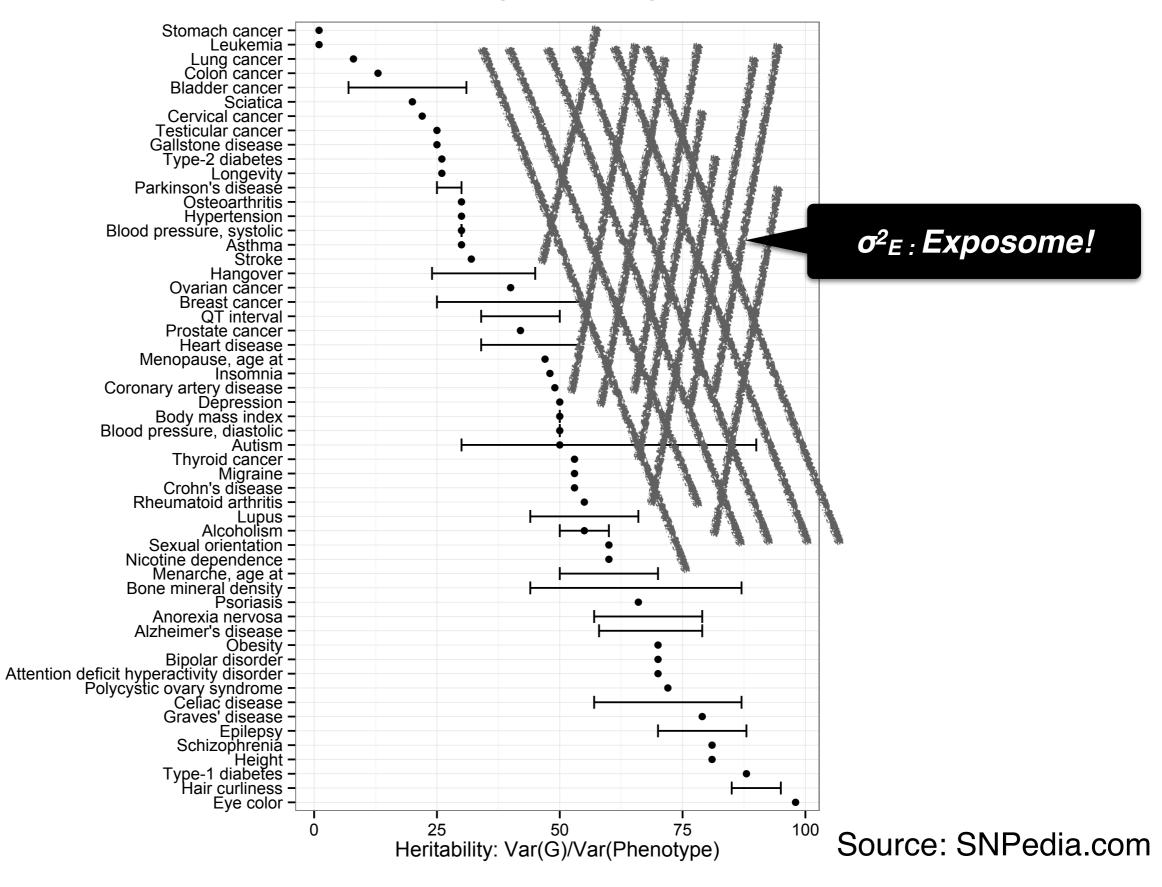




G estimates for complex traits are **low and variable**: massive opportunity for *high-throughput E discovery*



G estimates for complex traits are **low and variable**: massive opportunity for *high-throughput E discovery*



How can we drive **discovery** of environmental factors (**E**) in disease phenotypes (**P**)?

How can we drive **discovery** of environmental factors (**E**) in disease phenotypes (**P**)?

Enhance accessibility of clinical and environmental data, and analytic artificial intelligence tools!

Enhance <u>accessibility</u> of large <u>open data</u> and <u>tools</u> to drive **discovery** of environmental factors (**E**) in disease phenotypes (**P**)

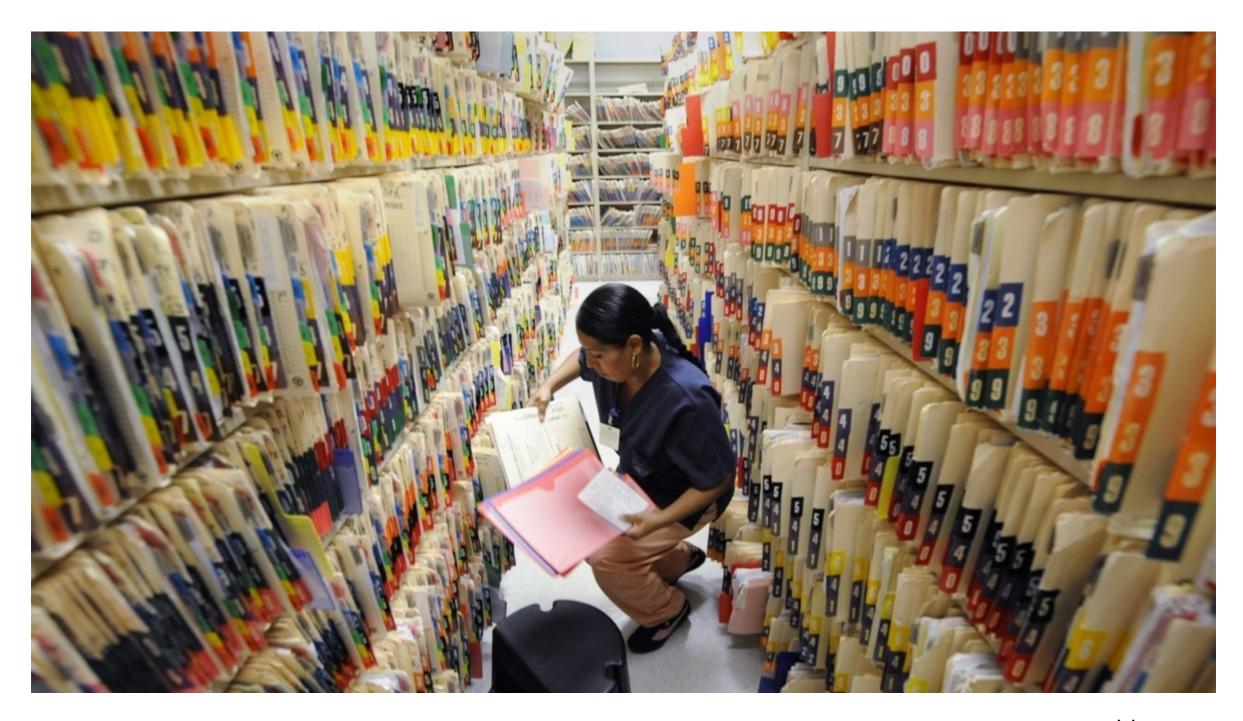
Noémie Elhadad, PhD Columbia

Greg Cooper, MD, PhD Pittsburgh

Chirag Patel, PhD Harvard

Vasant Honavar, PhD Penn State

Where do we get disease (P) data?



wearable.com

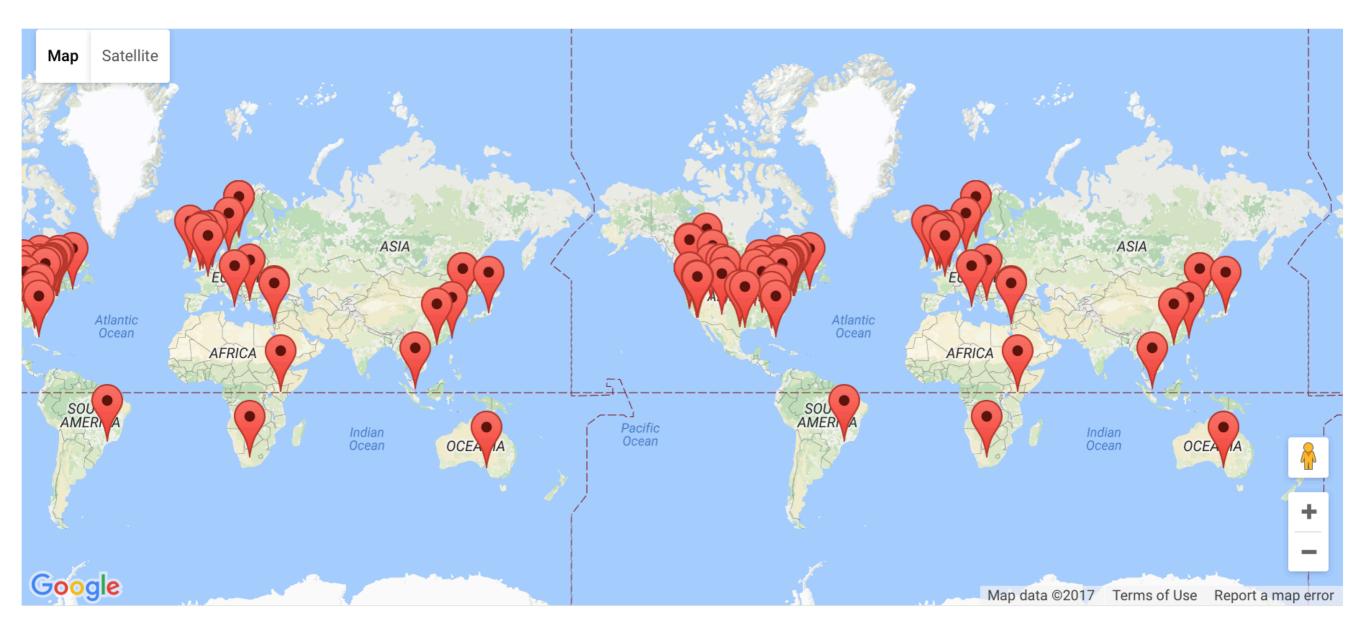
Longitudinal data on *millions* of patients

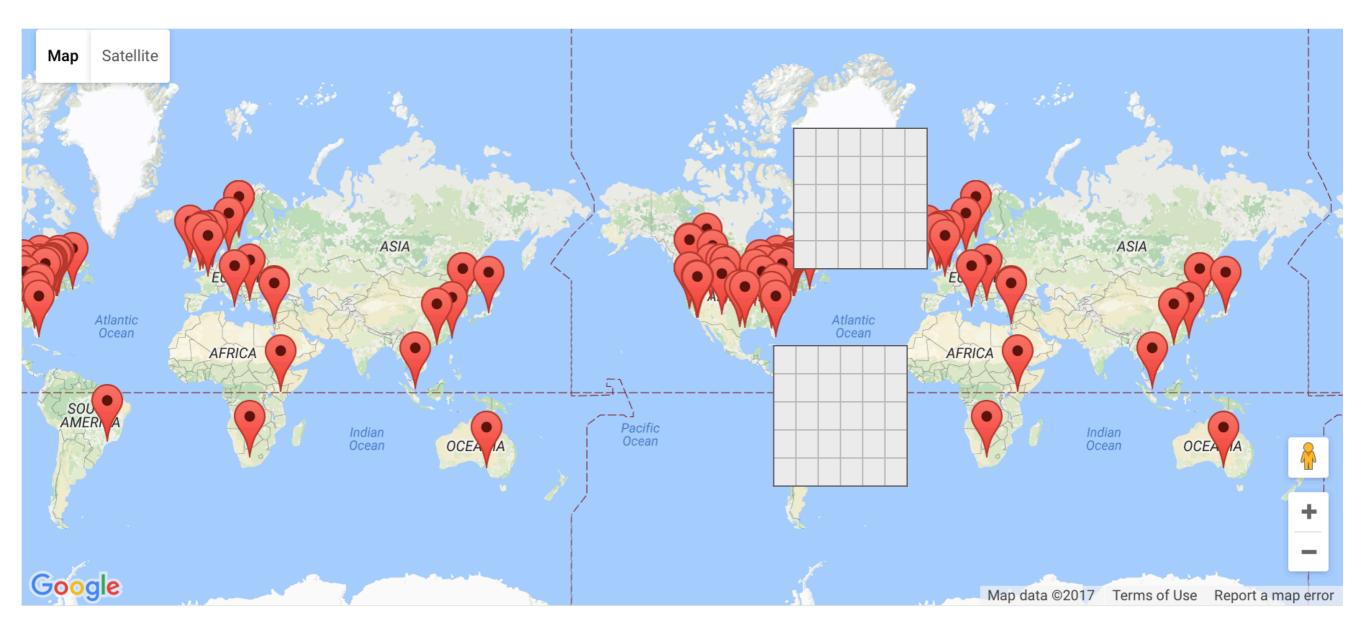
- Longitudinal data on *millions* of patients
 - · diagnoses, prescriptions, lab reports, notes

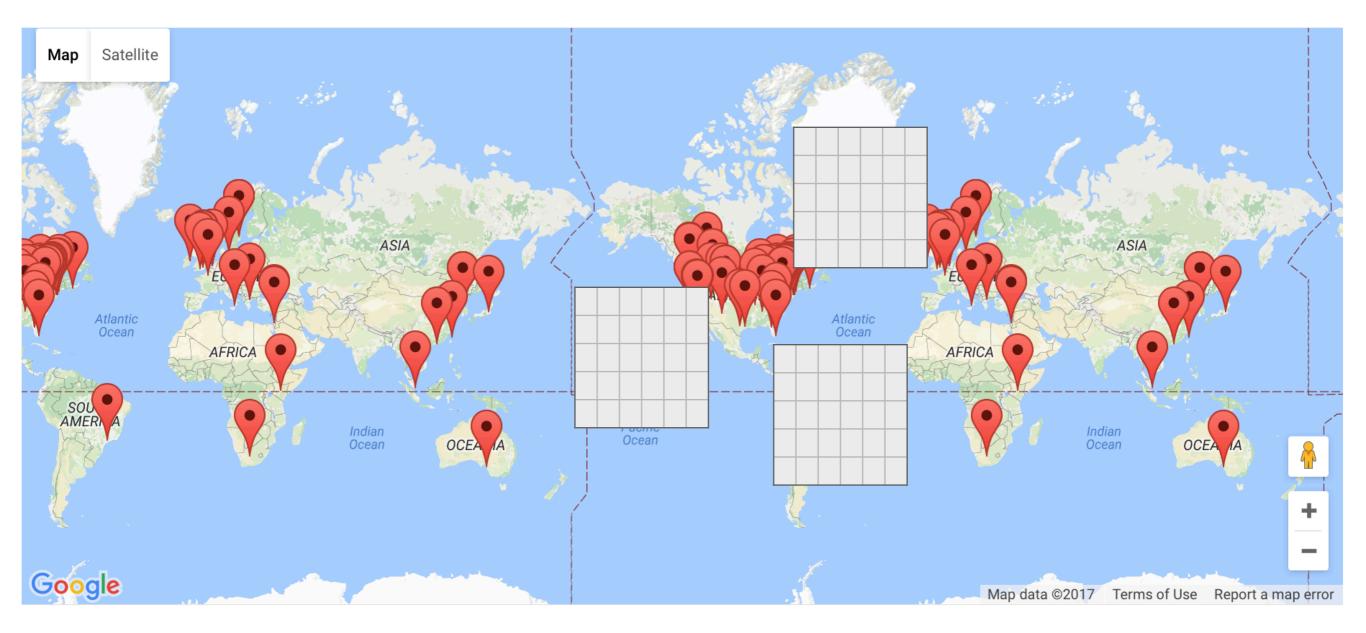
- Longitudinal data on *millions* of patients
 - · diagnoses, prescriptions, lab reports, notes
- Sitting there in institutional IT infrastructure

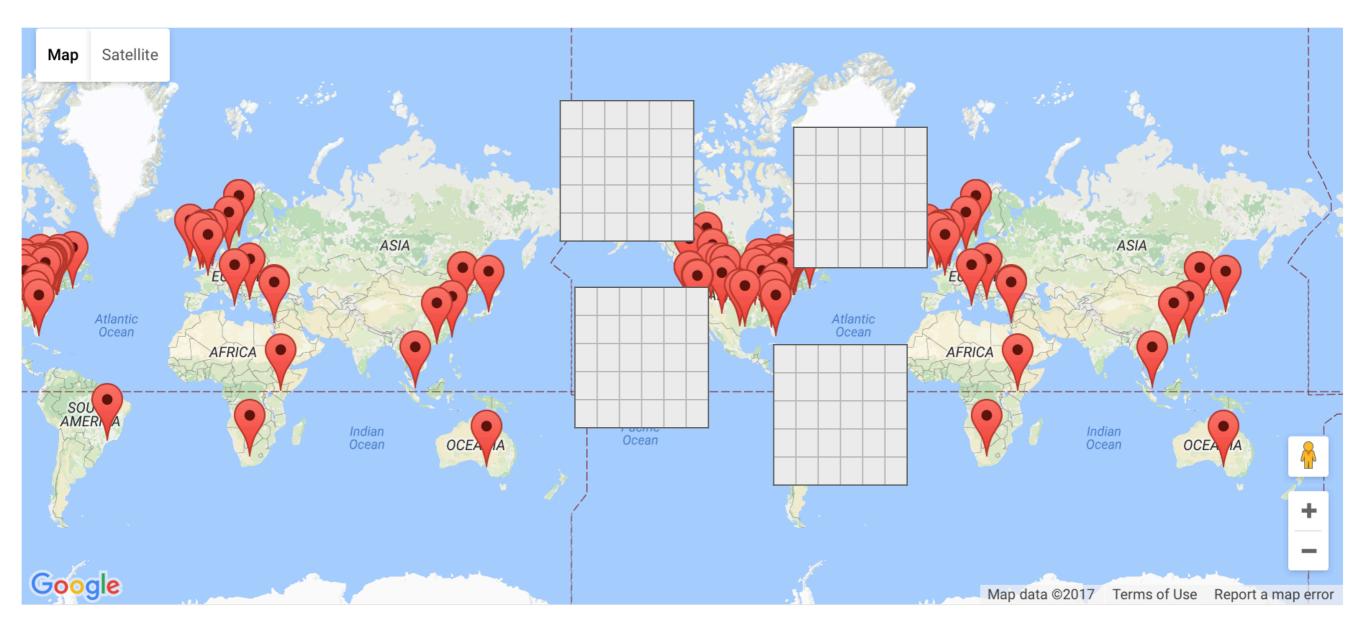
- Longitudinal data on *millions* of patients
 - diagnoses, prescriptions, lab reports, notes
- Sitting there in institutional IT infrastructure
- OHDSI provides a unified model to access data across institutions, enhancing the scientific process!

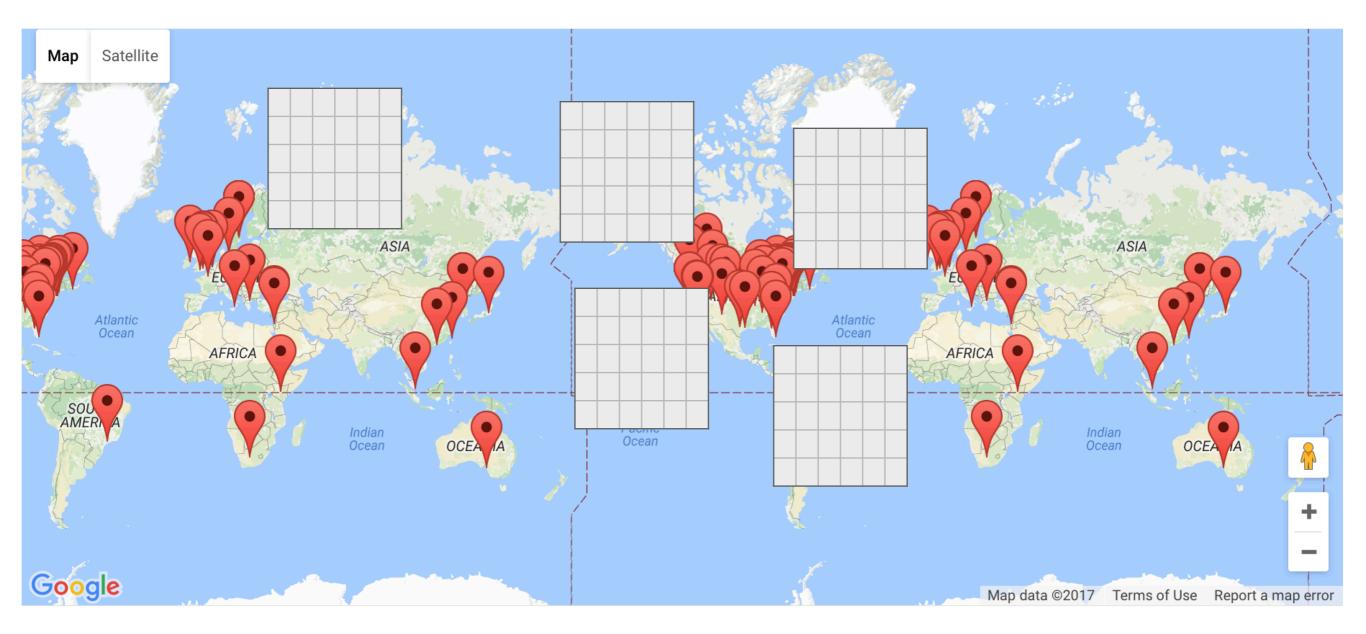
Noémie Elhadad, PhD Columbia











Where do we get *environmental (E)* data?



· Geological

- · Geological
 - NASA Cloud and Atmosphere Profiles

- NASA Cloud and Atmosphere Profiles
- NOAA Climate Data

- NASA Cloud and Atmosphere Profiles
- NOAA Climate Data

- NASA Cloud and Atmosphere Profiles
- NOAA Climate Data
- Pollution

- NASA Cloud and Atmosphere Profiles
- NOAA Climate Data
- Pollution
 - EPA Air Quality Surveillance Data Mart, or AirData,

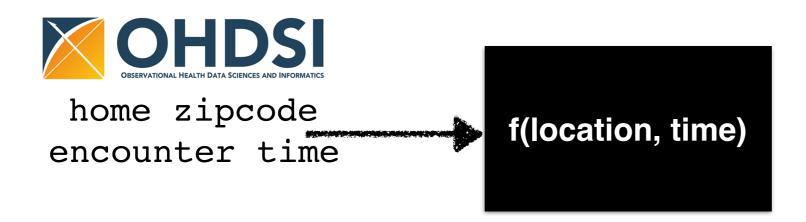
- NASA Cloud and Atmosphere Profiles
- NOAA Climate Data
- Pollution
 - EPA Air Quality Surveillance Data Mart, or AirData,

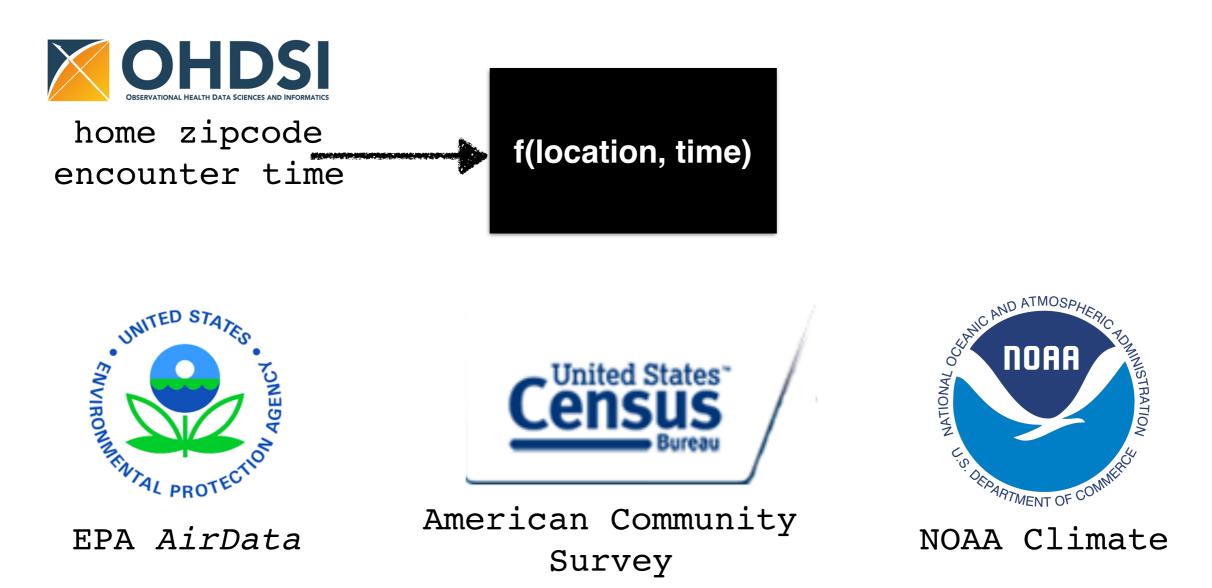
- NASA Cloud and Atmosphere Profiles
- NOAA Climate Data
- Pollution
 - EPA Air Quality Surveillance Data Mart, or AirData,
- $\cdot \text{ Socio-Economic}$

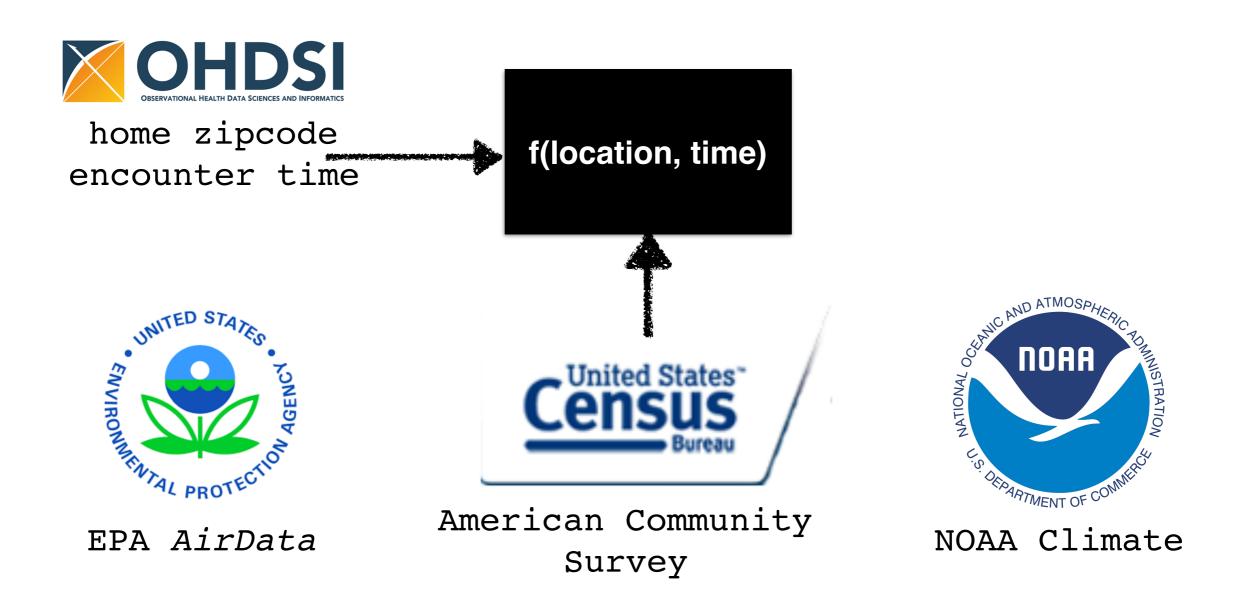
- · Geological
 - NASA Cloud and Atmosphere Profiles
 - NOAA Climate Data
- Pollution
 - EPA Air Quality Surveillance Data Mart, or AirData,
- \cdot Socio-Economic
 - US Census American Community Survey (ACS)

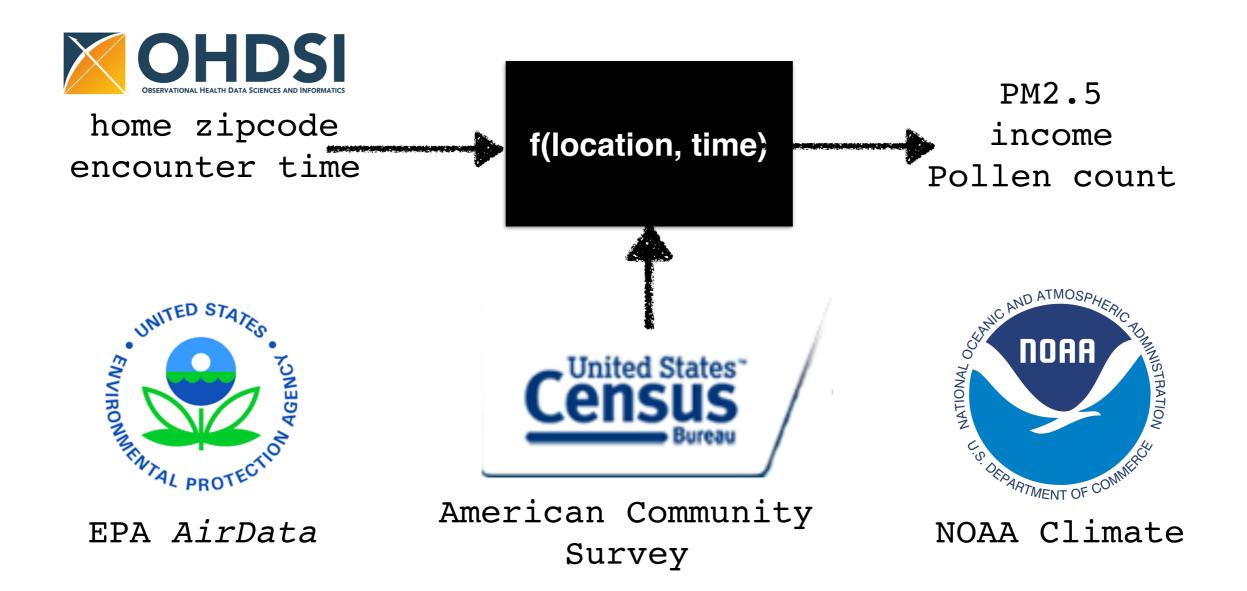
- · Geological
 - NASA Cloud and Atmosphere Profiles
 - NOAA Climate Data
- Pollution
 - EPA Air Quality Surveillance Data Mart, or AirData,
- \cdot Socio-Economic
 - US Census American Community Survey (ACS)
- · Epidemiological

- · Geological
 - NASA Cloud and Atmosphere Profiles
 - NOAA Climate Data
- Pollution
 - EPA Air Quality Surveillance Data Mart, or AirData,
- \cdot Socio-Economic
 - US Census American Community Survey (ACS)
- · Epidemiological
 - CDC Wonder, USDA Food Atlas









		age	sex	E?	Time(E)	zip			
	individual ₁	21	F	no	12/11/2015	02215			
	individual ₂	35	М	yes	1/1/2016	95376			
	individual ₃	75	М	yes	3/5/1998	02124			
	individual _n								

millions of patients

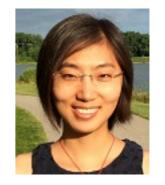
							<u> </u>	PA	NO	AA	Census	
		age	sex	E?	Time(E)	zip	Pb	PM2.5	Temp	Wind	hh income (K)	gini index
	individual ₁	21	F	no	12/11/2015	02215	23	50	20	0	50	0.20
	individual ₂	35	М	yes	1/1/2016	95376	10	23	70	15	100	0.1
	individual ₃	75	М	yes	3/5/1998	02124	0	3	55	30	30	0.50
	individual _n											

millions of patients

Will it work? yep!

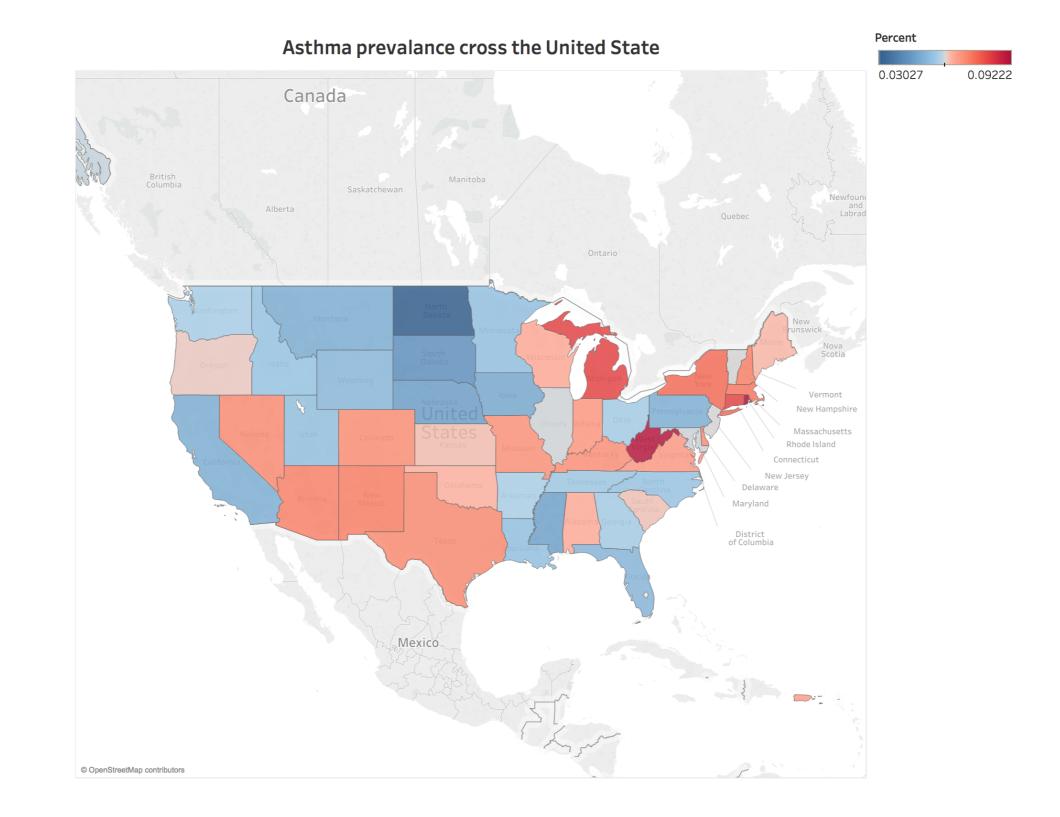
Does temperature (and weather) influence asthma-related pediatric ER visits?

- Children <= 17 y/o with >=1
 ICD9 code corresponding to 493.*
- N=56K, >84K ER visits
- Weather station data
 - (daily temperature, wind, humidity)
- Case-crossover design (only investigated cases)

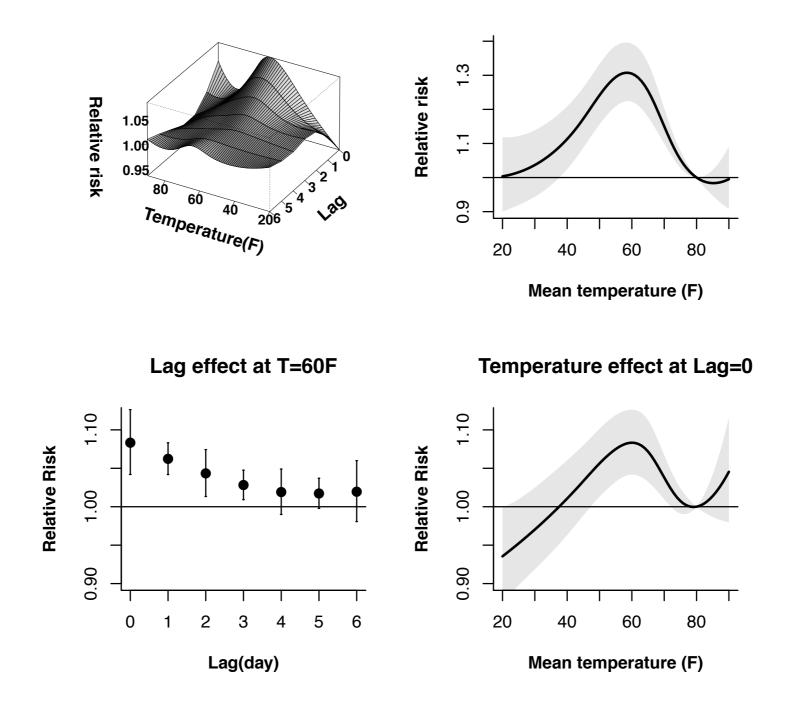


Yeran Li, PhD (MS, HSPH) Chirag Lakhani, PhD (HMS) Yun Wang, PhD (Post-doc, HSPH)

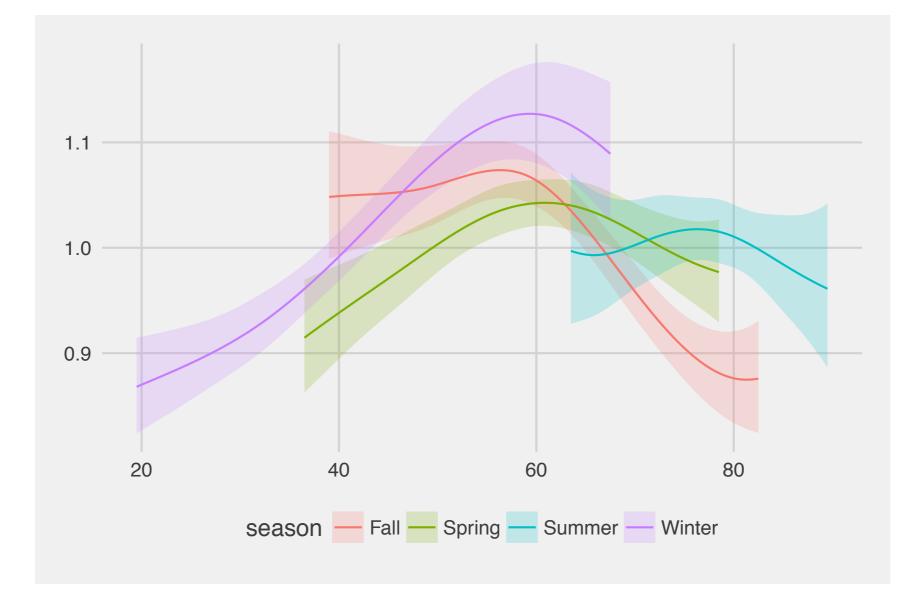
Prevalence of asthma attack varies across the US



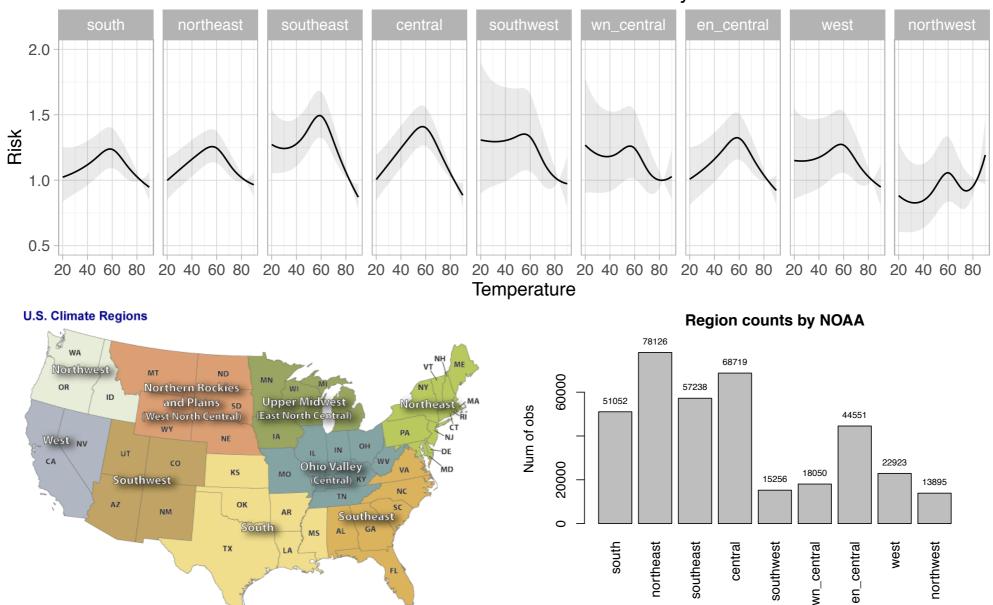
Does temperature influence asthma ER visits?: yes! Relative risk of asthma attack by mean temperature



Rates of asthma attacks depend on season?: yes!

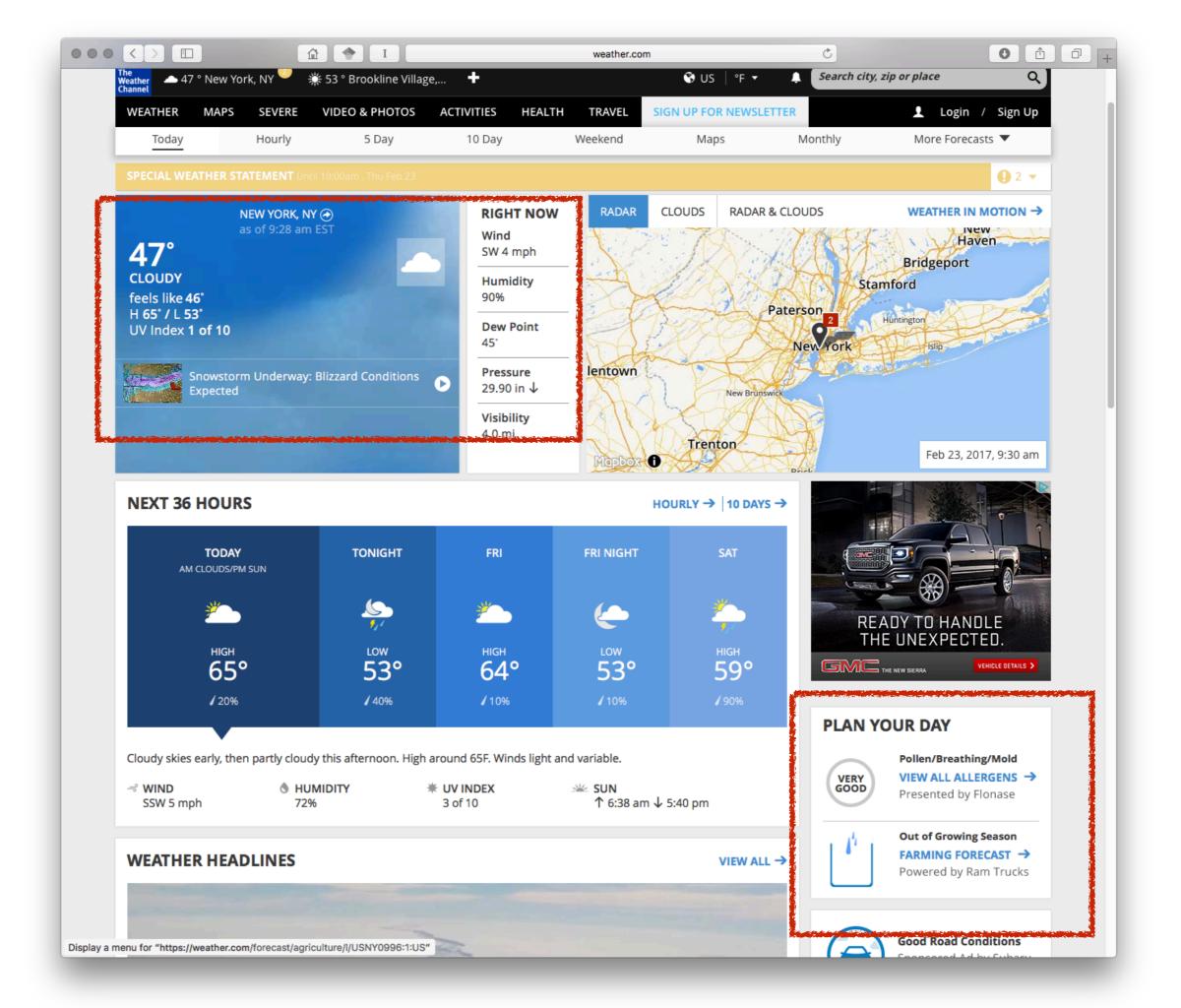


Rates of asthma attacks dependent on region?: yes!

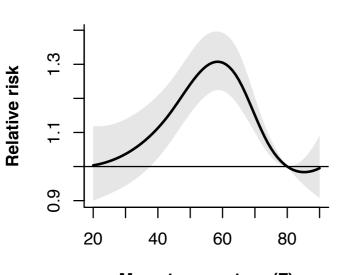


weather effect: different weather zones by NOAA

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php



Does temperature (and weather) influence asthmarelated ER visits in kids?: the tip of the iceberg!



Mean temperature (F)

Overall temperature effect

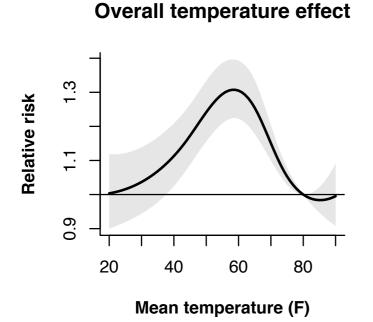
What other scientific questions?

- what is influence of pollen?
- what is the influence of <u>air pollution</u>?
- what about <u>adults</u>?

Can we replicate the analysis?

- different populations
- using different data
- with different analysts

Does temperature (and weather) influence asthmarelated ER visits in kids?: the tip of the iceberg!



OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

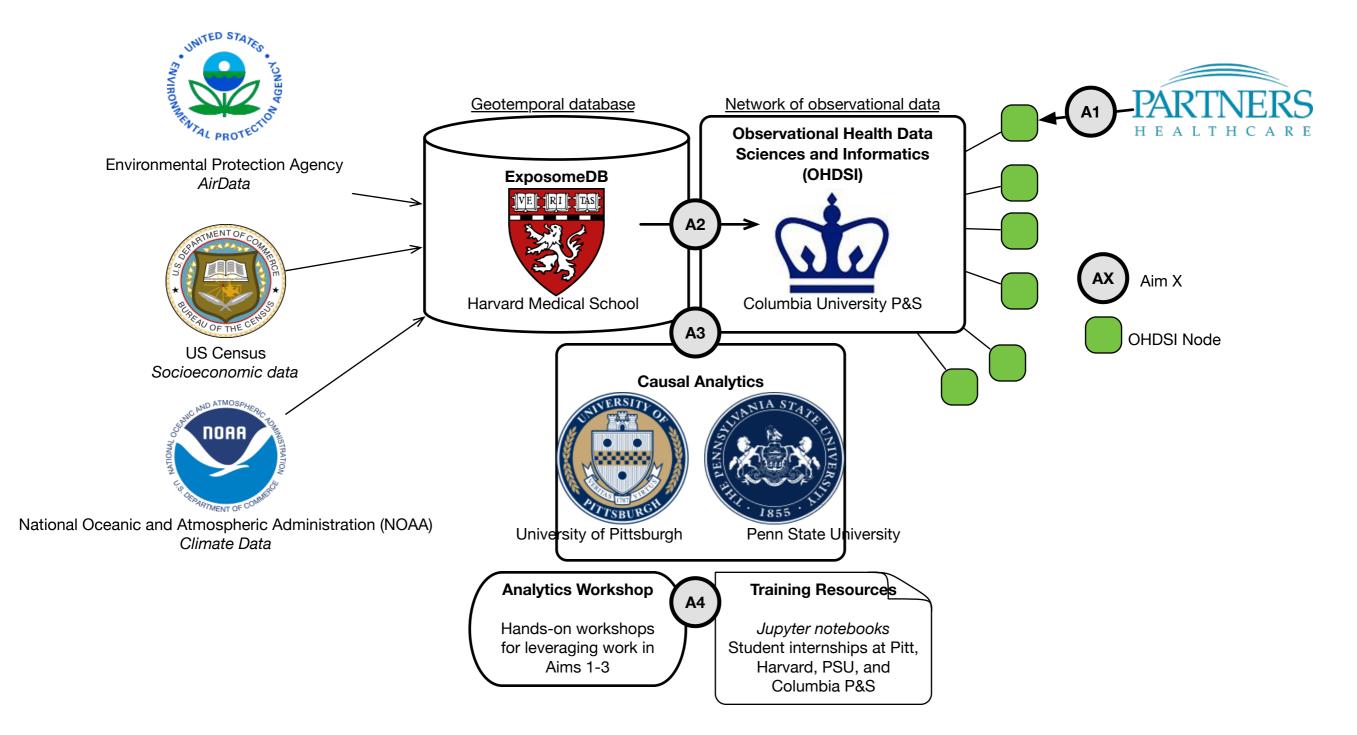
What other scientific questions?

- what is influence of pollen?
- what is the influence of <u>air pollution</u>?
- what about <u>adults</u>?

Can we replicate the analysis?

- different populations
- using different data
- with different analysts

Integrating the *ExposomeDB* with *OHDSI* and causal modeling tools to drive and demonstrate discovery.



How does *socioeconomic* context influence hospital use, disease rates, and recovery?

How does *socioeconomic* context influence hospital use, disease rates, and recovery?

What is the effect of *air pollution* levels in *disease*?

How does *socioeconomic* context influence hospital use, disease rates, and recovery?

What is the effect of *air pollution* levels in *disease*?

Do adverse weather conditions influence hospital use?

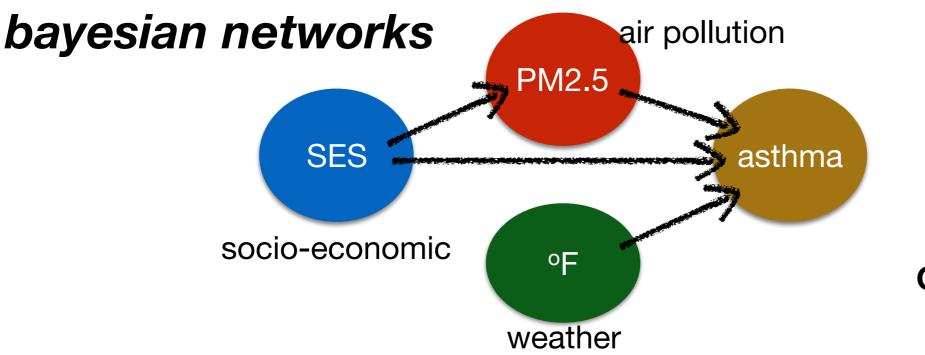
How does *socioeconomic* context influence hospital use, disease rates, and recovery?

What is the effect of *air pollution* levels in *disease*?

Do adverse weather conditions influence hospital use?

What pharmaceutical **drugs** lead to **adverse health outcomes**?

We will harness tools in machine learning extract *signal from noise*!



Greg Cooper, MD, PhD Pittsburgh

case-crossover

Systematic assessment of pharmaceutical prescriptions in association with cancer risk: a method to conduct a populationwide medication-wide longitudinal study

Vasant Honavar, PhD Penn State

Chirag J. Patel¹, Jianguang Ji², Jan Sundquist², John P. A. Ioannidis³ & Kristina Sundquist²

Sci Rep 2016

			ccd.pitt.edu						0 1 +	
CCCD	Center for Causal Discovery	About	Research	Education	Tools 	Wiki	People	Calendar	News	

Cau

Causal Web

our user-friendly web application for performing causal discovery analysis on big data using large memory servers at the Pittsburgh Supercomputing Center. Use this software if you want to quickly try out a causal discovery algorithm or if you have big data that cannot be analyzed on your local hardware.

The software currently includes:

- Fast Greedy Equivalence Search (FGES) for continuous variables
- Fast Greedy Equivalence Search (FGES) for discrete variables
- Greedy Fast Causal Inference (GFCI) algorithm for continuous variables

> User guide > Web app

Causal Command

a Java library and command line implementation of algorithms for performing causal discovery on big data. Use this software if you are interested incorporating analysis via a shell script or in a Java-based program. The 'Software' button below leads to a comprehensive repository. Choose the 'causal-cmd-x.x.x -jar-with-dependencies.jar' from the downloads list when using this as an executable via the command line or as an API in a Java program.

The software currently includes:

- Fast Greedy Equivalence Search (FGES) for continuous variables
- Fast Greedy Equivalence Search (FGES) for discrete variables
- Greedy Fast Causal Inference (GFCI) algorithm for continuous variables

> User guide

> Software

Display a menu

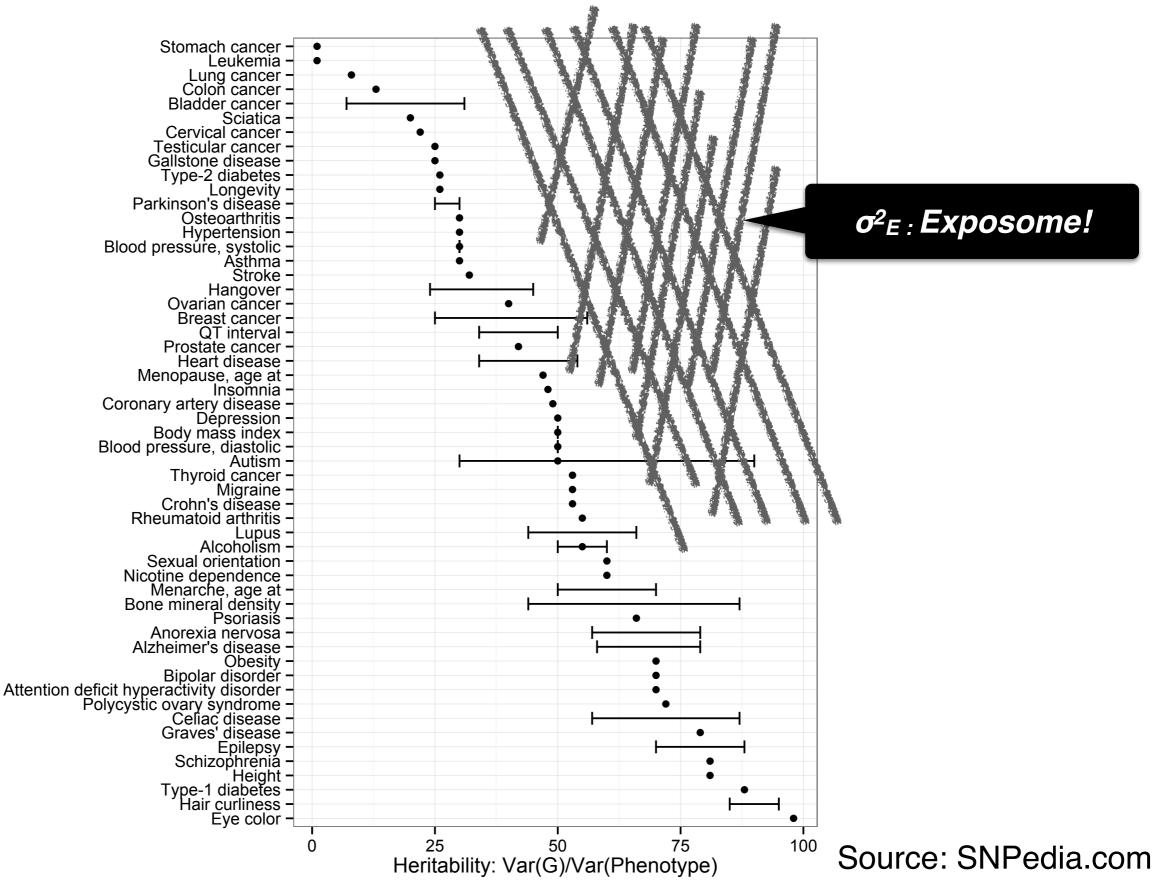
http://www.ccd.pitt.edu/tools/

• 2-day hands-on workshop in New York or Boston

- 2-day hands-on workshop in New York or Boston
- remote "exchange" internship program and 2-week immersion

- 2-day hands-on workshop in New York or Boston
- remote "exchange" internship program and 2-week immersion
- dissemination of electronic training resources

Many hypotheses are possible to address: useful for **can** we build a machine learning predictor to estimate *E*?



Thanks

RagGroup Chirag Lakhani Yeran Li Shreyas Bhave Rolando Acosta

Harvard DBMI

Isaac Kohane Susanne Churchill Nathan Palmer Sunny Alvear Michal Preminger

Noémie Elhadad (Columbia) Vasant Honavar (PSU) Greg Cooper (Pitt) George Hripcsak (Columbia)

> René Baston Katie Naum Kathleen McKeown

NIERS NIH Common Fund National Institute of Environmental Health Sciences Big Data to Knowledge

Agilent Technologies

DEPARTMENT OF Biomedical Informatics Chirag J Patel chirag@hms.harvard.edu @chiragjp www.chiragjpgroup.org

