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G

We are great at G investigation!

over 2400
Genome-wide Association Studies (GWAS)
https://www.ebi.ac.uk/gwas/



E: 79?7

Nothing comparable to elucidate E influence!

We lack high-throughput methods
and data to discover new E in P...
until now!



Heritability (H?) is the range of phenotypic
variability attributed to genetic variability in a

H2 — 0%
O2p

Indicator of the proportion of phenotypic
differences attributed to G.




G estimates for burdensome diseases are low and variable:
massive opportunity for E discovery
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G estimates for complex traits are low and variable:
massive opportunity for high-throughput E discovery

Stomach cancer -
Leukemia -

Lung cancer -

Colon cancer -

Bladder cancer -

~ Sciatica -

Cervical cancer -
Testicular cancer -
Gallstone disease -
Type-2 diabetes -

_ Longevity —
Parkinson's disease -
Osteoarthritis -
Hypertension -

Blood pressure, systolic -
Asthma -

Stroke -

‘Hangover -

Ovarian cancer =

Breast cancer -

QT interval -

Prostate cancer -

Heart disease -
Menopause, age at -
Insomnia -

Coronary artery disease -
Depression -

Body mass index -

Blood pressure, diastolic -
~Autism -

Thyroid cancer -
Migraine -

Crohn's disease -
Rheumatoid arthritis -
Lupus -

Alcoholism -

~ Sexual orientation —
Nicotine dependence -
Menarche, age at -

Bone mineral density —
_Psoriasis -

Anorexia nervosa -
Alzheimer's disease -

. Obesity —

_ - Bipolar disorder -
Attention deficit hyFeractlwty disorder -
Polycystic ovary syndrome -
Celiac disease —

Graves' disease -
__Epilepsy
Schizophrenia —

‘Height -

Type-1 diabetes -

air curliness -

Eye color -

25 50 75
Heritability: Var(G)/Var(Phenotype)

"™ Source: SNPedia.com



G estimates for complex traits are low and variable:
massive opportunity for high-throughput E discovery
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How can we drive discovery of
environmental factors (E) in disease phenotypes (P)?



How can we drive discovery of
environmental factors (E) in disease phenotypes (P)?

Enhance accessibility of clinical and environmental data,
and analytic artificial intelligence tools!



Enhance accessibility of large open data and tools to
drive discovery of
environmental factors (E) in disease phenotypes (P)

Noémie Elhadad, PhD Greg Cooper, MD, PhD
Columbia

Pittsburgh

Chirag Patel, PhD Vasant Honavar, PhD
Harvard Penn State



Where do we get disease (P) data?



wearable.com
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Where do we get disease P data?
Health record data from your doctor!

- Longitudinal data on millions of patients

diagnoses, prescriptions, lab reports, notes

- Sitting there in institutional IT infrastructure

OHDSI provides a unified model to access data across
institutions, enhancing the scientific process!



"OHDSI

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS

Noémie Elhadad, PhD
Columbia



Capitalize on digitalized health record data
(from around the world)!
High-powered dataset(s) for discovery.
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Capitalize on digitalized health record data
(from around the world)!
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Map Satellite
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High-powered dataset(s) for discovery.
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Where do we get environmental (E) data?



Examples of sources of disparate external exposome datasets
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Examples of sources of disparate external exposome datasets
available in the Exposome Data Warehouse

- Geological

- NASA - Cloud and Atmosphere Profiles

- NOAA Climate Data
- Pollution

- EPA Air Quality Surveillance Data Mart, or AirData,
- Socio-Economic

- US Census American Community Survey (ACS)

- Epidemiological

- CDC Wonder, USDA Food Atlas
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A key challenge:
mashing up Exposome Data Warehouse with patient
data from OHDSI

OBSERVATIONAL HEALTH DATA SCIENCES AND INFORMATICS
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millions of patients

QHDOS|

age | sex E? Time(E) Zip
individualy | 21 | F no | 12/11/2015 | 02215
individual, | 385 | M | yes | 1/1/2016 | 95376
individualz | 75 | M | vyes | 3/5/1998 | 02124

individual




millions of patients

Temp

Wind

QHDSI
age | sex E? Time(E) Zip
individualy 21 F no 12/11/2015 | 02215
individualy, | 35 | M | vyes 1/1/2016 | 95376
individual3 75 M yes 3/5/1998 02124

20 0
70 15
95 30

individual,




Will it work? yep!



Does temperature (and weather) influence
asthma-related pediatric ER visits?

- Children <= 17 y/o with >="1
ICD9 code corresponding to 493.*

. N=56K, >84K ER visits Yeran Li, PhD (MS, HSPH)

Chirag Lakhani, PhD (HMS)
Yun Wang, PhD (Post-doc, HSPH)

- Weather station data

- (daily temperature, wind,
humidity)

- Case-crossover design (only
investigated cases)



Prevalence of asthma attack varies across the US

Asthma prevalance cross the United State
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Does temperature influence asthma ER visits?: yes!
Relative risk of asthma attack by mean temperature
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Rates of asthma attacks depend on season?: yes!

1.1
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Rates of asthma attacks dependent on region?: yes!

weather effect: different weather zones by NOAA
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Does temperature (and weather) influence asthma-
related ER visits in kids?: the tip of the iceberg!

Overall temperature effect

What other scientific questions?
] - what is influence of pollen?
/\ - what is the influence of air pollution?

o « what about adults?
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Can we replicate the analysis?
- different populations

* using different data

* with different analysts



Does temperature (and weather) influence asthma-
related ER visits in kids?: the tip of the iceberg!

Overall temperature effect

What other scientific questions?

5 0C * what is influence of pollen?
s - /\ * what is the influence of air pollution?

o - what about adults?

Can we replicate the analysis?
- different populations

* using different data

* with different analysts




Integrating the ExposomeDB with OHDSI and causal
modeling tools to drive and demonstrate discovery.

/ \ [
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National Oceanic and Atmospheric Administration (NOAA)
Climate Data
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Harvard Medical School
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Many hypotheses are possible to address: useful for
public health & planning!

How does socioeconomic context influence hospital use,
disease rates, and recovery?

What is the effect of air pollution levels in disease?

Do adverse weather conditions influence hospital use?

What pharmaceutical drugs lead to adverse health
outcomes?



We will harness tools in machine learning
extract signal from noise!

air pollution

bayesian networks

- asthma

SOCIO-economic

Greg Cooper, MD, PhD

e Pittsburgh

case-crossover

Systematic assessment of
pharmaceutical prescriptions in
association with cancerrisk: a
method to conduct a population-

wide medication-wide longitudinal |
study Vasant Honavar, PhD

Chirag J. Patel’, Jianguang Ji, Jan Sundquist?, John P. A. loannidis? & Kristina Sundquist? Pe n n State

Sci Rep 2016
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c Causal Web

our user-friendly web application for performing causal discovery analysis on big data using large memory servers at the Pittsburgh Supercomputing Center.
Use this software if you want to quickly try out a causal discovery algorithm or if you have big data that cannot be analyzed on your local hardware.

The software currently includes:

User guide Web app

Q Causal Command

a Java library and command line implementation of algorithms for performing causal discovery on big data. Use this software if you are interested
incorporating analysis via a shell script or in a Java-based program. The ‘Software' button below leads to a comprehensive repository. Choose the ‘causal-cmd-
XXX -jar-with-dependencies jar' from the downloads list when using this as an executable via the command line or as an APl in a Java program.

The software currently includes:

User guide Software

Display a menu

http://www.ccd.pitt.edu/tools/
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Integrating the ExposomeDB with OHDSI and analytics
to drive and demonstrate discovery by the community!
(trainees especially welcome)

e 2-day hands-on workshop in New York or Boston

* remote “exchange” internship program and 2-week
Immersion

» dissemination of electronic training resources



Many hypotheses are possible to address: useful for can
we build a machine learning predictor to estimate E?
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